Patents by Inventor Quanyuan Shang

Quanyuan Shang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8449950
    Abstract: A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising precursor particles dispersed in a carrying medium is activated in an activation chamber by application of an electric field to ionize at least a portion of the precursor mixture. The activated precursor mixture is then mixed with a combustible gas mixture to add thermal energy to the precursor particles, converting them to nanocrystals, which deposit on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: May 28, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Quanyuan Shang, Lu Yang, Karl M. Brown, Donald J. K. Olgado, Victor Pebenito, Hooman Bolandi, Tetsuya Ishikawa, Robert Z. Bachrach, Liang-Yuh Chen
  • Patent number: 8399065
    Abstract: A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising electrochemically active precursor particles dispersed in a carrying medium is provided to a processing chamber and thermally treated using a combustible gas mixture also provided to the chamber. The precursor is converted to nanocrystals by the thermal energy, and the nanocrystals are deposited on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: March 19, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Quanyuan Shang, Lu Yang, Karl M. Brown, Donald J. K. Olgado, Victor Pebenito, Hooman Bolandi, Tetsuya Ishikawa, Robert Z. Bachrach, Liang-Yuh Chen
  • Patent number: 8372205
    Abstract: A substrate support and method for fabricating the same are provided. In one embodiment of the invention, a substrate support includes an electrically conductive body having a substrate support surface that is covered by an electrically insulative coating. At least a portion of the coating centered on the substrate support surface has a surface finish of between about 200 to about 2000 micro-inches. In another embodiment, a substrate support includes an anodized aluminum body having a surface finish on the portion of the body adapted to support a substrate thereon of between about 200 to about 2000 micro-inches. In one embodiment, a substrate support assembly includes an electrically conductive body having a substrate support surface, a substrate support structure that is adapted to support the conductive body and the conductive body is covered by an electrically insulative coating.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: February 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Soo Young Choi, Beom Soo Park, Quanyuan Shang, John M. White, Dong-Kil Yim, Chung-Hee Park
  • Patent number: 8002896
    Abstract: A shadow frame and framing system for semiconductor fabrication equipment comprising a rectangular frame having four edges, the edges forming an interior lip with a top surface and an bottom engagement surface; and a cross beam disposed between at least two edges of the frame, the cross beam having a top surface and a bottom engagement surface, the engagement surface of the cross beam configured to be flush with the engagement surface of the lip; wherein one or more of the engagement surfaces are configured to cover metal interconnect bonding areas on a carrier disposed below the frame. The shadow frame is particularly useful in plasma enhanced chemical vapor deposition (PECVD) applications used to make active matrix liquid crystal displays (AMLCDs) and solar cells.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: August 23, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Sakae Tanaka, Qunhua Wang, Sanjay Yadav, Quanyuan Shang, William R. Harshbarger
  • Patent number: 7992956
    Abstract: The present invention provides inkjet print nozzle calibration systems and methods for calibrating an inkjet print nozzle. The systems may include an inkjet print nozzle adapted to dispense ink onto a substrate in response to a firing pulse voltage, a light source adapted to illuminate the dispensed ink, an imaging system adapted to measure a transmittance of light through the dispensed ink, and a controller adapted to controllably adjust the inkjet print nozzle based on the measured light transmittance. The methods may include dispensing ink onto a surface with an inkjet print nozzle set at a firing pulse voltage, measuring a light transmittance characteristic of the dispensed ink, determining a volume of ink dispensed based on the transmittance characteristic, and adjusting a fire pulse voltage of the inkjet print nozzle based on a difference between the determined volume of ink dispensed and an expected volume level of ink dispensed.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: August 9, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Quanyuan Shang, John M. White
  • Publication number: 20110111181
    Abstract: The present invention provides methods, apparatus and systems for balancing the brightness of a flat panel display using varying thicknesses of ink in a display object. The invention includes a display object for a flat panel display which includes a substrate, a pixel matrix on the substrate, and ink deposited into the pixel matrix. The ink deposited in a central area of the pixel matrix has a thickness that is greater than ink deposited in an edge/corner area of the pixel matrix. Numerous additional and alternative aspects of the invention are disclosed.
    Type: Application
    Filed: August 12, 2010
    Publication date: May 12, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Quanyuan Shang
  • Patent number: 7915114
    Abstract: Method of fabricating a thin-film transistor (TFT) in which a gate metal is deposited onto a substrate in order to form the gate of the thin-film transistor. The substrate may be an insulative substrate or a color filter. In a first method, the gate metal is subjected to an H2 plasma. After subjecting the gate metal to an H2 plasma, the gate insulating film is deposited onto the gate. In a second method, first and second layers of gate insulating film are respectively deposited on the gate at a first and second deposition rates. One layer is deposited under H2 or argon dilution conditions and has improved insulating conditions while the other layer serves to lower the overall compressive stress of the dual layer gate insulator. In a third method, an n+ silicon film is formed on a substrate by maintaining a flow of silane, phosphine and hydrogen gas into a processing chamber at substrate temperatures of about 300° C. or less.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: March 29, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Mark Hsiao, Dong-Kil Yim, Takako Takehara, Quanyuan Shang, William R. Harshbarger, Woong-Kwon Kim, Duk-Chul Yun, Youn-Gyung Chang
  • Publication number: 20110045206
    Abstract: A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising precursor particles dispersed in a carrying medium is activated in an activation chamber by application of an electric field to ionize at least a portion of the precursor mixture. The activated precursor mixture is then mixed with a combustible gas mixture to add thermal energy to the precursor particles, converting them to nanocrystals, which deposit on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
    Type: Application
    Filed: August 24, 2010
    Publication date: February 24, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Quanyuan Shang, Lu Yang, Karl M. Brown, Donald J.K. Olgado, Victor Pebenito, Hooman Bolandi, Tetsuya Ishikawa, Robert Z. Bachrach, Liang-Yuh Chen
  • Publication number: 20110045170
    Abstract: A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising electrochemically active precursor particles dispersed in a carrying medium is provided to a processing chamber and thermally treated using a combustible gas mixture also provided to the chamber. The precursor is converted to nanocrystals by the thermal energy, and the nanocrystals are deposited on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
    Type: Application
    Filed: August 24, 2010
    Publication date: February 24, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Quanyuan Shang, Lu Yang, Karl M. Brown, Donald J.K. Olgado, Victor Pebenito, Hooman Bolandi, Tetsuya Ishikawa, Robert Z. Bachrach, Liang-Yuh Chen
  • Patent number: 7732010
    Abstract: A method for supporting a glass substrate comprising providing a substrate support having an aluminum body, a substrate contact area formed on the surface of the substrate support, wherein the process of forming the substrate contact area comprises forming an anodization layer on a surface region of the aluminum body, the coating having a thickness of between about 0.3 mils and about 2.16 mils, wherein the surface region substantially corresponds to the substrate contact area, and preparing the anodization layer disposed over the surface region to a surface roughness between about 88 micro-inches and about 230 micro-inches, followed by anodizing the substrate surface to said thickness, positioning the substrate support adjacent a substrate processing region in a substrate processing chamber, wherein the substrate contact area is adjacent the substrate processing region, positioning the glass substrate on the substrate contact area.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: June 8, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Soo Young Choi, Beom Soo Park, Quanyuan Shang, Robert I. Greene, John M. White, Dong-Kil Yim, Chung-Hee Park, Kam Law
  • Patent number: 7681986
    Abstract: Embodiments of an ink jet printing system include a motion stage adapted to move a substrate having a display object in a printing direction and a first printing assembly mounted over the motion stage including a set of print heads aligned and arranged consecutively in the printing direction such that the display object moves under the print heads sequentially. Embodiments of a method of ink jet printing include moving a substrate under the print heads of printing assembly sequentially in a printing direction, activating alternate ink jetting channels within each print head of the first printing assembly, activating corresponding channels within adjacent print heads in the first printing assembly alternately, and depositing ink in alternating sub-pixels within one or more pixels on the substrate.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: March 23, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Bassam Shamoun, John M. White, Quanyuan Shang, Shinichi Kurita
  • Patent number: 7637580
    Abstract: The invention provides methods, systems, and drivers for controlling an inkjet printing system. The driver may include logic including a processor, memory coupled to the logic, and a fire pulse generator circuit coupled to the logic. The fire pulse generator may include a connector to facilitate coupling the driver to a print head. The fire pulse generator circuit may also include a fixed current source circuit adapted to generate a fire pulse with a constant slew rate that facilitates easy adjustment of ink drop size. The logic is adapted to receive an image and to convert the image to an image data file. The image data file is adapted to be used by the driver to trigger the print head to deposit ink into pixel wells on a substrate as the substrate is moved in a print direction. Numerous other aspects are disclosed.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: December 29, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Bassam Shamoun, Eugene Mirro, Janusz Jozwiak, Quanyuan Shang, Shinichi Kurita, John M. White
  • Patent number: 7625063
    Abstract: In a first aspect, a first apparatus is provided for inkjet printing. The first apparatus includes an inkjet head support that includes a plurality of inkjet heads. A first inkjet head of the plurality of inkjet heads is adapted to be independently moveable in both directions along a lateral axis relative to a second inkjet head of the plurality of inkjet heads. The first apparatus also includes a system controller adapted to control an independent lateral movement of the first inkjet head relative to the second inkjet head. Numerous other aspects are provided.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: December 1, 2009
    Assignee: Applied Materials, Inc.
    Inventors: John M. White, Fan Cheung Sze, Quanyuan Shang, Shinichi Kurita, Hongbin Ji, Janusz Jozwiak, Inchen Huang, Emanual Beer
  • Patent number: 7611217
    Abstract: Methods and apparatus for inkjet inkjet drop positioning are provided. A first method includes determining an intended deposition location of an ink drop on a substrate, depositing the ink drop on the substrate using an inkjet printing system, detecting a deposited location of the deposited ink drop on the substrate, comparing the deposited location to the intended location, determining a difference between the deposited location and the intended location, and compensating for the difference between the deposited location and the intended location by adjusting a parameter of an inkjet printing system. Numerous other aspects are provided.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: November 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Bassam Shamoun, Janusz Jozwiak, Eugene Mirro, Quanyuan Shang, Shinichi Kurita, John M. White
  • Publication number: 20090267975
    Abstract: In a first aspect, a system is provided. The system includes (1) a stage adapted to move a substrate relative to print heads during printing; (2) at least one print head suspended from a support above the stage and adapted to be moveable in a plane above the stage; (3) a controller operable to rotate the print head about a center of the print head; and (4) an imaging system adapted to capture an image of the print head and to determine a center point of the print head based upon images of the print head captured as the print head is rotated. Numerous other aspects are provided.
    Type: Application
    Filed: July 6, 2009
    Publication date: October 29, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: John M. White, Fan Cheung Sze, Quanyuan Shang, Shinichi Kurita, Hongbin Ji, Janusz Jozwiak, Inchen Huang, Emanual Beer
  • Publication number: 20090184990
    Abstract: Systems and methods for measuring deposited ink in a substrate are provided. The invention includes a light source adapted to transmit light through a deposited ink on a substrate, and a camera having a CCD sensor array wherein the camera is adapted to measure the amount of light that is transmitted through the deposited ink. Numerous other aspects are provided.
    Type: Application
    Filed: December 6, 2008
    Publication date: July 23, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Quanyuan Shang, John M. White
  • Publication number: 20090185186
    Abstract: Systems, methods and apparatus for manufacturing color filters for flat panel displays are provided that include an inkjet printing system integrated with a light transmittance measurement system. The inkjet printing system includes a stage for supporting and moving a substrate past inkjet print heads adapted to deposit ink in pixel wells on the substrate. The light transmittance measurement system includes a sensor and a light source disposed on opposite sides of the substrate and adapted to determine the thickness of the ink deposited on the substrate. The light source is adapted to move with the sensor to allow different pixel wells containing deposited ink to be measured, and the stage includes at least one optical path to allow light from the light source to pass through the deposited ink to the sensor.
    Type: Application
    Filed: December 6, 2008
    Publication date: July 23, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Quanyuan Shang, John M. White
  • Patent number: 7556334
    Abstract: In a first aspect, a system is provided. The system includes (1) a stage adapted to move a substrate relative to print heads during printing; (2) at least one print head suspended from a support above the stage and adapted to be moveable in a plane above the stage; (3) a controller operable to rotate the print head about a center of the print head; and (4) an imaging system adapted to capture an image of the print head and to determine a center point of the print head based upon images of the print head captured as the print head is rotated. Numerous other aspects are provided.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: July 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: John M. White, Fan Cheung Sze, Quanyuan Shang, Shinichi Kurita, Hongbin Ji, Janusz Jozwiak, Inchen Huang, Emanual Beer
  • Patent number: 7544723
    Abstract: Blue inks for displays are provided. In one aspect, the blue inks include one or more blue organic pigments, one or more monomers, one or more polymeric dispersants, and one or more organic solvents. In another aspect, the blue inks include one or more blue organic pigments, one or more violet pigments, one or more monomers, one or more polymeric dispersants, and one or more organic solvents. Methods of forming displays that include dispensing the blue inks by inkjetting onto a substrate and displays that include the blue inks are also provided.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: June 9, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Lizhong Sun, Quanyuan Shang, John M. White
  • Publication number: 20090141218
    Abstract: In the formation of color filters for flat panel displays, the invention includes concurrently curing and shrinking a pixel matrix and a color material on a substrate to achieve a substantially co-planar top surface. The invention includes applying a first activation energy to a pixel matrix material to render the material partially cured, minimally shrunk, hardened, and chemically ready for the application of a color material; applying the color material; and concurrently shrinking the color material and pixel material by the application of at least an additional activation energy wherein the additional activation energy is greater than the first activation energy. Numerous other aspects are provided.
    Type: Application
    Filed: October 23, 2008
    Publication date: June 4, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Ligui Zhou, Quanyuan Shang