Patents by Inventor Quanzhen LIU

Quanzhen LIU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11980785
    Abstract: A foam production method includes mixing liquid nitrogen with a foaming material to produce foam. A gas is produced in situ from liquid nitrogen. As the ratio of the volume of the gas produced by gasification of liquid nitrogen to the volume of the liquid nitrogen is relatively high, when a large gas supply flow is needed to generate a large foam flow, a liquid nitrogen storage device of a small volume can be used instead of bulky air supply devices such as high-pressure gas cylinders, air compressors, air compressor sets and the like, reducing the volume of the air supply device. In addition, the liquid nitrogen used in foaming will release nitrogen gas after the foam blast, such that the nitrogen is also able to inhibit combustion on the surface of burning materials, accelerating the extinguishing of the fire.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: May 14, 2024
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, CHINA PETROLEUM & CHEMICAL CORPORATION QINGDAO RESEARCH INSTITUTE OF SAFETY ENGINEERING
    Inventors: Shanjun Mu, Chunming Jiang, Weihua Zhang, Quanzhen Liu, Xuqing Lang, Xiaodong Mu, Lin Wang, Jingfeng Wu, Longmei Tan, Zuzheng Shang, Rifeng Zhou, Jianxiang Li, Hui Yu
  • Publication number: 20230149753
    Abstract: A foam production method includes mixing liquid nitrogen with a foaming material to produce foam. A gas is produced in situ from liquid nitrogen. As the ratio of the volume of the gas produced by gasification of liquid nitrogen to the volume of the liquid nitrogen is relatively high, when a large gas supply flow is needed to generate a large foam flow, a liquid nitrogen storage device of a small volume can be used instead of bulky air supply devices such as high-pressure gas cylinders, air compressors, air compressor sets and the like, reducing the volume of the air supply device. In addition, the liquid nitrogen used in foaming will release nitrogen gas after the foam blast, such that the nitrogen is also able to inhibit combustion on the surface of burning materials, accelerating the extinguishing of the fire.
    Type: Application
    Filed: January 19, 2023
    Publication date: May 18, 2023
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, CHINA PETROLEUM & CHEMICAL CORPORATION QINGDAO RESEARCH INSTITUTE OF SAFETY ENGINEERING
    Inventors: Shanjun MU, Chunming JIANG, Weihua ZHANG, Quanzhen LIU, Xuqing LANG, Xiaodong MU, Lin WANG, Jingfeng WU, Longmei TAN, Zuzheng SHANG, Rifeng ZHOU, Jianxiang LI, Hui YU
  • Patent number: 11559711
    Abstract: A foam production method includes mixing liquid nitrogen with a foaming material to produce foam. A gas is produced in situ from liquid nitrogen. As the ratio of the volume of the gas produced by gasification of liquid nitrogen to the volume of the liquid nitrogen is relatively high, when a large gas supply flow is needed to generate a large foam flow, a liquid nitrogen storage device of a small volume can be used instead of bulky air supply devices such as high-pressure gas cylinders, air compressors, air compressor sets and the like, reducing the volume of the air supply device. In addition, the liquid nitrogen used in foaming will release nitrogen gas after the foam blast, such that the nitrogen is also able to inhibit combustion on the surface of burning materials, accelerating the extinguishing of the fire.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: January 24, 2023
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, CHINA PETROLEUM & CHEMICAL CORPORATION QINGDAO RESEARCH INSTITUTE OF SAFETY ENGINEERING
    Inventors: Shanjun Mu, Chunming Jiang, Weihua Zhang, Quanzhen Liu, Xuqing Lang, Xiaodong Mu, Lin Wang, Jingfeng Wu, Longmei Tan, Zuzheng Shang, Rifeng Zhou, Jianxiang Li, Hui Yu
  • Patent number: 11161745
    Abstract: The present disclosure relates to a carbon-based porous material microscopically exhibiting a three-dimensional cross-linked net-like hierarchical pore structures with micropores nested in mesopores that are in turn nested in macropores. Such material provides for accelerated adsorption and desorption rates and lower desorption temperatures for recovery of organic gas molecules.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: November 2, 2021
    Assignees: CHINA PETROLEUM AND CHEMICAL CORPORATION, SINOPEC RESEARCH INSTITUTE OP SAFETY ENGINEERING
    Inventors: Shanjun Mu, Yuxin Zhao, Chunming Jiang, Quanzhen Liu, Weihua Zhang, Lin Wang, Shucai Zhang, Xiaodong Mu
  • Publication number: 20210283442
    Abstract: A foam production method includes mixing liquid nitrogen with a foaming material to produce foam. A gas is produced in situ from liquid nitrogen. As the ratio of the volume of the gas produced by gasification of liquid nitrogen to the volume of the liquid nitrogen is relatively high, when a large gas supply flow is needed to generate a large foam flow, a liquid nitrogen storage device of a small volume can be used instead of bulky air supply devices such as high-pressure gas cylinders, air compressors, air compressor sets and the like, reducing the volume of the air supply device. In addition, the liquid nitrogen used in foaming will release nitrogen gas after the foam blast, such that the nitrogen is also able to inhibit combustion on the surface of burning materials, accelerating the extinguishing of the fire.
    Type: Application
    Filed: February 26, 2018
    Publication date: September 16, 2021
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, CHINA PETROLEUM & CHEMICAL CORPORATION QINGDAO RESEARCH INSTITUTE OF SAFETY ENGINEERING
    Inventors: Shanjun MU, Chunming JIANG, Weihua ZHANG, Quanzhen LIU, Xuqing LANG, Xiaodong MU, Lin WANG, Jingfeng WU, Longmei TAN, Zuzheng SHANG, Rifeng ZHOU, Jianxiang LI, Hui YU
  • Publication number: 20210188649
    Abstract: A carbon-based porous material microscopically exhibiting a three-dimension 1 cross-linked net-like hierarchical pore structure, a specific surface area of 500˜2,500 m2/g and a water contact angle greater than 90°. The surface of the carbon-based porous material has a through hierarchical pore structure with mesopores nested in macropores and micropores nested in mesopores, the content of mesopores is high, and there are more adsorption activity sites exposed on the surface of the material, so that the diffusion path for organic gas molecules in the adsorption process is shortened. At the same time, the absorption and desorption rates may also be accelerated and the desorption temperature may be lowered. Furthermore, benefits result for solving the desorption and recovery problems of organic gas molecules. Moreover, the defects of ordinary porous carbon materials being easily hygroscopic, having a weakened capacity to adsorb target gas molecules in a humid environment, etc. are further effectively solved.
    Type: Application
    Filed: January 28, 2021
    Publication date: June 24, 2021
    Inventors: Shanjun MU, Yuxin ZHAO, Chunming JIANG, Quanzhen LIU, Weihua ZHANG, Lin WANG, Shucai ZHANG, Xiaodong MU
  • Publication number: 20190127227
    Abstract: A carbon-based porous material microscopically exhibiting a three-dimension 1 cross-linked net-like hierarchical pore structure, a specific surface area of 500˜2,500 m2/g and a water contact angle greater than 90°. The surface of the carbon-based porous material has a through hierarchical pore structure with mesopores nested in macropores and micropores nested in mesopores, the content of mesopores is high, and there are more adsorption activity sites exposed on the surface of the material, so that the diffusion path for organic gas molecules in the adsorption process is shortened. At the same time, the absorption and desorption rates may also be accelerated and the desorption temperature may be lowered. Furthermore, benefits result for solving the desorption and recovery problems of organic gas molecules. Moreover, the defects of ordinary porous carbon materials being easily hygroscopic, having a weakened capacity to adsorb target gas molecules in a humid environment, etc. are further effectively solved.
    Type: Application
    Filed: May 26, 2017
    Publication date: May 2, 2019
    Inventors: Yuxin ZHAO, Shanjun MU, Chunming JIANG, Quanzhen LIU, Weihua ZHANG, Lin WANG, Shucai ZHANG, Xiaodong MU