Patents by Inventor Quentin E. Walker

Quentin E. Walker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8089046
    Abstract: A method for determining the flow rate of a gas includes measuring a first concentration of a calibration gas provided to the process chamber at a first pressure and temperature by directing infrared radiation into the process chamber and monitoring a first amount of infrared radiation absorbed by the calibration gas. A mixture of a second gas and the calibration gas is provided to the process chamber while maintaining the first pressure and temperature. A second concentration of the calibration gas in the mixture is measured by directing infrared radiation into the process chamber and monitoring a second amount of infrared radiation absorbed by the calibration gas. A flow rate of the second gas is calculated by comparing the first and second concentrations of the calibration gas. In one embodiment, the calibration gas and the second gas may not absorb the infrared radiation at the same wavelength.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: January 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Matthew F. Davis, Thorsten B. Lill, Quentin E. Walker
  • Publication number: 20100190098
    Abstract: Methods and apparatus for monitoring and detecting absorbed infrared radiation endpoint(s) are provided herein. In some embodiments, a method for determining an endpoint of a photoresist removal process may include removing a photoresist from a substrate disposed in a process chamber using reactive species provided to the process chamber from a remote plasma source. Infrared radiation is directed into the at least one of the reactive species or process byproducts while removing the photoresist. A quantity of infrared radiation absorbed by at least one of the reactive species or process byproducts during the removal process is monitored. The photoresist removal process may be ended based upon the monitored quantity reaching a predetermined level.
    Type: Application
    Filed: January 27, 2009
    Publication date: July 29, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: QUENTIN E. WALKER, MATHEW F. DAVIS, DANNY CHIEN LU
  • Publication number: 20100076729
    Abstract: Methods and apparatus for predictive maintenance of semiconductor process equipment are provided herein. In some embodiments, a method of performing predictive maintenance on semiconductor processing equipment may include performing at least one self-diagnostic test on the semiconductor processing equipment with no substrate present in the equipment. The self-diagnostic test may include measuring one or more predictor parameters and one or more response parameters from the semiconductor process equipment. One or more expected response parameters may be calculated based upon the measured predictor parameters utilizing a predictive model. The one or more measured response parameters may be compared with the one or more expected response parameters. A determination may be made whether equipment maintenance is required based upon the comparison.
    Type: Application
    Filed: September 19, 2008
    Publication date: March 25, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: MATTHEW F. DAVIS, LEI LIAN, XIAOLIANG ZHUANG, QUENTIN E. WALKER
  • Publication number: 20100071438
    Abstract: A method for determining the flow rate of a gas includes measuring a first concentration of a calibration gas provided to the process chamber at a first pressure and temperature by directing infrared radiation into the process chamber and monitoring a first amount of infrared radiation absorbed by the calibration gas. A mixture of a second gas and the calibration gas is provided to the process chamber while maintaining the first pressure and temperature. A second concentration of the calibration gas in the mixture is measured by directing infrared radiation into the process chamber and monitoring a second amount of infrared radiation absorbed by the calibration gas. A flow rate of the second gas is calculated by comparing the first and second concentrations of the calibration gas. In one embodiment, the calibration gas and the second gas may not absorb the infrared radiation at the same wavelength.
    Type: Application
    Filed: September 19, 2008
    Publication date: March 25, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Matthew F. Davis, Thorsten B. Lill, Quentin E. Walker
  • Patent number: 7393459
    Abstract: A method for automatic determination of a state of a substrate in a plasma processing chamber is provided. Substrate reflectance data is collected in a processing chamber prior to processing to be analyzed with reference reflectance data to determine if the substrate state meets a control criterion. The substrate state may define the thickness and the qualities of the films on the substrate, the critical dimensions of the different layers on the substrate. The reflectance data is analyzed using a multi-variant analysis technique, such as principle component analysis. In addition to analyzing substrate state prior to processing, substrate reflectance could also be collected in a processing chamber during processing to be analyzed with reference reflectance data to further determine if the substrate state and/or the substrate processing are meeting a control criterion.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: July 1, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Matthew F Davis, Lei Lian, Quentin E. Walker