Patents by Inventor Quentin Scott Denzene

Quentin Scott Denzene has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9399143
    Abstract: An antenna for an implantable medical device (IMD) is provided that is formed on the same substrate as the telemetry circuitry for the IMD. The telemetry circuitry is formed on a portion of the substrate within the interior of a housing for the IMD, while at least one antenna is formed on an exterior portion of the substrate on the exterior of the housing to allow for far field telemetry. At least one electrical interconnect is formed on the substrate for connecting the antenna to the telemetry circuitry, where the electrical interconnect may comprise a controlled impedance line to minimize loss. A conformally-shaped hermetic cover, such as a ceramic material, may be formed in a desired shape around the exterior portion of the substrate and antenna and cofired together to form a monolithic structure encasing the antenna and exterior portion of the substrate.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: July 26, 2016
    Assignee: Medtronic, Inc.
    Inventors: Joyce K. Yamamoto, Quentin Scott Denzene, Michael William Barror
  • Patent number: 8059628
    Abstract: A low power multiple channel receiver mixing architecture for detecting wake-up signals over multiple communication channels in sniff processing performed in an implantable medical device (IMD). The architecture includes a direct conversion real receiver configured to scan a selected center channel and a Weaver receiver configured in parallel to the direct conversion real receiver to simultaneously scan side channels, together simultaneously detecting whether a wake-up signal is being received over the center and side channels with minimal power consumption. The architecture further utilizes a falsing protection algorithm that reduces power consumption during sniff operations by inhibiting the sniffing of channels likely to provide a false indication of a wake-up signal based the presence of unwanted signals on those channels.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: November 15, 2011
    Assignee: Medtronic, Inc.
    Inventors: Peter Bradley, Guy A. Delight, Remi Le Reverend, Philip Dorning, Andrew M. Bottomley, Eric D. Corndorf, Charles H. Dudding, Nicholas C. Wine, George C. Rosar, Quentin Scott Denzene, Robert S. Wentink
  • Publication number: 20100114245
    Abstract: An antenna for an implantable medical device (IMD) is provided that is formed on the same substrate as the telemetry circuitry for the IMD. The telemetry circuitry is formed on a portion of the substrate within the interior of a housing for the IMD, while at least one antenna is formed on an exterior portion of the substrate on the exterior of the housing to allow for far field telemetry. At least one electrical interconnect is formed on the substrate for connecting the antenna to the telemetry circuitry, where the electrical interconnect may comprise a controlled impedance line to minimize loss. A conformally-shaped hermetic cover, such as a ceramic material, may be formed in a desired shape around the exterior portion of the substrate and antenna and cofired together to form a monolithic structure encasing the antenna and exterior portion of the substrate.
    Type: Application
    Filed: December 19, 2008
    Publication date: May 6, 2010
    Inventors: Joyce K. Yamamoto, Quentin Scott Denzene, Michael William Barror
  • Publication number: 20090252042
    Abstract: A low power multiple channel receiver mixing architecture for detecting wake-up signals over multiple communication channles in sniff processing performed in an implantable medical device (IMD). The architecture includes a direct conversion real receiver configured to scan a selected center channel and a Weaver receiver configured in parallel to the direct conversion real receiver to simultaneously scan side channels, together simultaneously detecting whether a wake-up signal is being received over the center and side channels with minimal power consumption. The architecture further utilizes a falsing protection algorithm that reduces power consumption during sniff operations by inhibiting the sniffing of channels likely to provide a false indication of a wake-up signal based the presence of unwanted signals on those channels.
    Type: Application
    Filed: February 2, 2009
    Publication date: October 8, 2009
    Inventors: Peter Bradley, Guy A. Delight, Remi Le Reverend, Philip Dorning, Andrew M. Bottomley, Eric D. Corndorf, Charles H. Dudding, Nicholas C. Wine, George C. Rosar, Quentin Scott Denzene, Robert S. Wentink
  • Patent number: 6629365
    Abstract: A method of providing environmental protection to an electronic component includes placing an electromagnetic shield having at least one cavity in contact with a circuit board having electrical components thereon so as to substantially enclose at least a first compartment between the circuit board and the shield, the shield includes at least one entry hole connecting to the first compartment. A conformal coating is applied by introducing the conformal coating into the first compartment through the entry hole while holding the shield in contact with the circuit board so that the coating is applied to the exposed portions of the circuit board within the compartment, but not applied to portions of the circuit board contacted by the shield. An electrically conductive gasket may be positioned between and in contact with both the circuit board and the shield before the applying of the conformal coating.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: October 7, 2003
    Assignee: Ericsson Inc.
    Inventors: Quentin Scott Denzene, Edwin John Nealis
  • Patent number: 6301123
    Abstract: A card module includes a circuit board with a front panel secured along one edge, and a board extractor catch mounted to the front panel. The front panel includes a keyhole. The board extractor catch mounts in the keyhole so that the board extractor catch completely covers the keyhole to prevent air flow through the keyhole. The outer end of the board extractor catch includes a tool-receiving opening to engage a board extracting tool.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: October 9, 2001
    Assignee: Ericsson INC
    Inventors: Edwin John Nealis, Quentin Scott Denzene
  • Patent number: 6264480
    Abstract: An RF emissions shield for grounding a chassis to an associated connector mounted on a backplane includes a shield body, mounting means for securing the shield body to the backplane, and grounding means for electrically connecting the shield body to the connector. At least one spring member is integral with the shield body and is adapted to engage the chassis such that the spring member is biased against the chassis. Preferably, the at least one spring member includes a plurality of curved, resilient fingers extending from an edge of the shield body. The mounting means may include an aperture defined in the shield body, the aperture sized and configured to receive the connector such that at least an engagement portion of the shield body along the aperture engages the connector.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: July 24, 2001
    Assignee: Ericsson Inc.
    Inventors: Edwin John Nealis, Quentin Scott Denzene
  • Publication number: 20010004316
    Abstract: An electromagnetic shield including at least one entry hole is placed in contact with a circuit board, thereby substantially enclosing a compartment. With the shield and circuit board held together, conformal coating is introduced into the compartment through the entry hole. The conformal coating coats the exposed portions of the circuit board within the compartment, but does not coat the portions of the circuit board contacted by the shield. The circuit board may include ground traces that divide the circuit board into sections. An optional electrically conductive gasket may be used between the ground traces and the shield to provide good electrical contact between the shield and the circuit board. In addition, a connector seal may be used to form a barrier preventing entry of environmental contaminants into critical connector interface areas. The connector seal is inserted into the forwardly facing pin cavity of a male connector so that the male pins pierce through the connector seal.
    Type: Application
    Filed: February 7, 2001
    Publication date: June 21, 2001
    Inventors: Quentin Scott Denzene, Edwin John Nealis
  • Patent number: 6219258
    Abstract: An electromagnetic shield including at least one entry hole is placed in contact with a circuit board, thereby substantially enclosing a compartment. With the shield and circuit board held together, conformal coating is introduced into the compartment through the entry hole. The conformal coating coats the exposed portions of the circuit board within the compartment, but does not coat the portions of the circuit board contacted by the shield. The circuit board may include ground traces that divide the circuit board into sections. An optional electrically conductive gasket may be used between the ground traces and the shield to provide good electrical contact between the shield and the circuit board. In addition, a connector seal may be used to form a barrier preventing entry of environmental contaminants into critical connector interface areas. The connector seal is inserted into the forwardly facing pin cavity of a male connector so that the male pins pierce through the connector seal.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: April 17, 2001
    Assignee: Ericsson Inc.
    Inventors: Quentin Scott Denzene, Edwin John Nealis