Patents by Inventor Quinlan Yee Shuck
Quinlan Yee Shuck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12134141Abstract: An additive manufacturing system may include an energy source, an optical system to modify and direct an energy beam from the energy source toward a component to form a melt pool, and a material delivery device to deliver material to the melt pool. The optical system may form an annular energy beam, direct the annular energy beam toward the component, receive at least a portion of thermal emissions produced by the annular energy beam and the melt pool, and direct the portion of the thermal emissions toward an imaging device, which may be used to control the energy source.Type: GrantFiled: June 9, 2021Date of Patent: November 5, 2024Assignee: Rolls-Royce CorporationInventor: Quinlan Yee Shuck
-
Patent number: 12121966Abstract: An additive manufacturing technique may include depositing, via a filament delivery device, a filament onto a surface of a substrate. The filament includes a binder and a powder including at least one metal or alloy and at least one braze alloy. The technique also includes sacrificing the binder to form a preform. The technique also includes sintering the preform to form a component including the at least one metal or alloy and the at least one braze alloy.Type: GrantFiled: November 11, 2020Date of Patent: October 22, 2024Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold
-
Patent number: 12011763Abstract: A system may include a current source; a first metal or alloy component with a first major surface electrically coupled to the current source; a second metal or alloy component with a second major surface electrically coupled in series to the first component and the current source via an external electrical conductor, where the first and second major surfaces are positioned adjacent to each other to define a joint region; a metal or alloy powder disposed in at least a portion of the joint region; and a controller. The controller may be configured to cause the current source to output an alternating current that conducts through the first component and the second component to induce magnetic eddy currents, magnetic hysteresis, or both within at least a portion of the metal or alloy powder disposed in at least the first portion of the joint region.Type: GrantFiled: November 3, 2021Date of Patent: June 18, 2024Assignee: Rolls-Royce CorporationInventor: Quinlan Yee Shuck
-
Patent number: 12005505Abstract: A method may include depositing, from a slurry, suspension, or tape, on a surface of an additively manufactured component comprising a metal or alloy, powder comprising at least one of a metal, an alloy, or a ceramic; sintering the powder to form a surface layer on the additively manufactured component; and hot isostatic pressing the additively manufactured component and the surface layer.Type: GrantFiled: June 15, 2020Date of Patent: June 11, 2024Assignees: Rolls-Royce Corporation, Rolls-Royce High Temperature Composites, Inc.Inventors: Quinlan Yee Shuck, Sungbo Shim
-
Patent number: 11999022Abstract: An additive manufacturing system includes an energy source and a material delivery device. The energy source is configured to direct an energy beam toward a component to form a melt pool. The material delivery device is configured to feed a wire toward the melt pool to deposit material on the component. In some examples, the material delivery device is configured to discharge a current to the wire to disengage the wire from the melt pool. In some examples, the material delivery device is configured to measure an arc voltage between the wire and the component.Type: GrantFiled: August 13, 2021Date of Patent: June 4, 2024Assignee: Rolls-Royce CorporationInventor: Quinlan Yee Shuck
-
Patent number: 11986911Abstract: An additive manufacturing system includes an energy source and a material delivery device. The energy source is configured to direct an energy beam toward a component to form a melt pool. The material delivery device is configured to feed a wire toward the melt pool to deposit material on the component. In some examples, the material delivery device is configured to discharge a current to the wire to disengage the wire from the melt pool. In some examples, the material delivery device is configured to measure an arc voltage between the wire and the component.Type: GrantFiled: August 13, 2021Date of Patent: May 21, 2024Assignee: Rolls-Royce CorporationInventor: Quinlan Yee Shuck
-
Patent number: 11980938Abstract: In some examples, systems and techniques for repairing or otherwise forming a blade of a bladed disk. In one example, a method including positioning a shield member around a perimeter of a partial blade extending from a rotor disk of a bladed disk, the shield member being positioned adjacent to a build surface of the partial blade; and depositing, with the shield member around the perimeter of the partial blade, a material on the build surface using an additive manufacturing technique to form a repaired portion on the build surface of the partial blade.Type: GrantFiled: November 23, 2021Date of Patent: May 14, 2024Assignees: Rolls-Royce Corporation, Rolls-Royce plcInventors: Scott Nelson, Martyn Anthony Jones, Quinlan Yee Shuck, Peter E. Daum, Nathaniel Ashburn
-
Patent number: 11976569Abstract: In general, techniques are described for fused filament fabrication of abradable coatings. An additive manufacturing system comprising a substrate defining a major surface, a filament delivery device, and a computing device may be configured to perform various aspects of the techniques. The computing device may be configured to control the filament delivery device to deposit a filament on the substrate, the filament including a powder and a binder, wherein the binder is configured to be substantially removed from the filament and the powder includes a metal or alloy configured to be sintered to form an abradable layer.Type: GrantFiled: November 12, 2020Date of Patent: May 7, 2024Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold
-
Patent number: 11890682Abstract: A method for connecting or joining a first substrate and a second substrate across an interface between the first substrate and the second substrate. The method includes disposing a fastener precursor in the bore and sintering the fastener precursor in the bore. The fastener precursor densifies and shrinks in at least one dimension to mechanically interlock with a contour in the bore and form a mechanical fastener in the bore, and the mechanical fastener forms an interlock between the first substrate and the second substrate.Type: GrantFiled: June 15, 2021Date of Patent: February 6, 2024Assignee: Rolls-Royce CorporationInventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu
-
Patent number: 11865642Abstract: A method of forming a ferrous metal case-hardened layer using additive manufacturing. The method includes delivering, by a material delivery device, a filler material to a surface of a substrate. The substrate includes a first ferrous metal. The filler material includes a second ferrous metal and a carbon-based material. The method also includes directing, by an energy delivery device, an energy toward a volume of the filler material to join at least some of the filler material to the substrate to form a component.Type: GrantFiled: September 9, 2020Date of Patent: January 9, 2024Assignee: Rolls-Royce CorporationInventors: Brian Drier, Amanda Dawn Graham, Robert Frederick Proctor, Quinlan Yee Shuck, Jacque Sue Bader
-
Patent number: 11833740Abstract: An example technique may include depositing, on or adjacent a substrate, a first volume of a polymeric material using an additive manufacturing technique. The first volume of the polymeric material has a first degree of polymer orientation associated with a first deposition rate and a first temperature. The example technique may include depositing, on or adjacent the substrate or the first volume of material, at least one second volume of the polymeric material. The second volume of the polymeric material has a second degree of polymer orientation associated with a second deposition rate and a second temperature. The first volume and the second volume are configured to respond to a shape change stimulus by exhibiting a respective first change in dimension and a second change in dimension. The first change in dimension is different from the second change in dimension by a predetermined threshold.Type: GrantFiled: April 26, 2021Date of Patent: December 5, 2023Assignee: Rolls-Royce CorporationInventor: Quinlan Yee Shuck
-
Patent number: 11820070Abstract: An additive manufacturing technique includes depositing, via a filament delivery device, a filament onto a surface of a substrate. The filament includes a binder and a high entropy alloy powder. The technique also includes sacrificing the binder to form a preform and sintering the preform to form a component.Type: GrantFiled: November 11, 2020Date of Patent: November 21, 2023Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold
-
Patent number: 11813671Abstract: A material deposition head includes a body portion and at least one nozzle. The body portion includes a first end, a second end, and a first exterior surface extending from the first end to the second end. The at least one nozzle is coupled to the body portion at or near the second end. The nozzle defines a second exterior surface and a material delivery channel that is fluidically coupled to a fluidized powder source configured to provide a plurality of particles of a material. At least one of the first exterior surface or the second exterior surface includes a microtextured surface configured to reduce a wettability of molten particles of the plurality of particles thereon.Type: GrantFiled: January 25, 2021Date of Patent: November 14, 2023Assignee: Rolls-Royce CorporationInventors: Scott Nelson, Quinlan Yee Shuck, Brandon David Ribic
-
Patent number: 11794250Abstract: In some examples, a method for additive manufacturing an article, the method including depositing a filament via a filament delivery device to form at least one track of the deposited filament, the at least one track of the deposited filament forming at least a portion of a preform article, wherein the filament includes a sacrificial binder and a powder, wherein the powder includes a plurality of elongated particles with each respective particle defining a longitudinal axis, wherein the longitudinal axes of the plurality of particles are substantially aligned with each other within the at least one track of the deposited filament; removing substantially all the binder from the at least one track of the preform article to form a powder article; and sintering the powder article to form a sintered article.Type: GrantFiled: March 25, 2021Date of Patent: October 24, 2023Assignee: Rolls-Royce CorporationInventors: Quinlan Yee Shuck, Robert Frederick Proctor
-
Patent number: 11787105Abstract: An additively manufactured component that includes a tool with a region having a plurality of overlying metal layers each derived from a metal powder filament. The region has a predetermined yield point selected based on an operation to be performed with the tool.Type: GrantFiled: November 13, 2020Date of Patent: October 17, 2023Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold
-
Publication number: 20230321793Abstract: A system may include a powder source; a powder delivery device; an energy delivery device; and a computing device. The computing device may be configured to: control the powder source to deliver metal powder to the powder delivery device; control the powder delivery device to deliver the metal powder to a surface of an abrasive coating; and control the energy delivery device to deliver energy to at least one of the abrasive coating or the metal powder to cause the metal powder to be joined to the abrasive coating.Type: ApplicationFiled: January 5, 2023Publication date: October 12, 2023Inventor: Quinlan Yee Shuck
-
Patent number: 11745264Abstract: In some examples, an additive manufacturing technique including forming an as-deposited coating on a substrate by depositing a filament via a filament delivery device, wherein the filament includes a sacrificial binder and a powder; removing substantially all the binder from the as-deposited coating; and sintering the as-deposited coating to form a thermal coating; wherein the thermal coating is configured to ablate in response to absorption of energy from an external environment, and wherein the ablation of the thermal coating reduces the energy transferred to the substrate.Type: GrantFiled: November 13, 2020Date of Patent: September 5, 2023Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold
-
Patent number: 11707788Abstract: In some examples, an additive manufacturing technique for forming a vacuum insulator. For example, a method including forming an article including a first layer, a second layer, and at least one support member extending between the first and second layer by depositing a filament via a filament delivery device, wherein the filament includes a sacrificial binder and a powder, and wherein the first layer, second layer, and at least one support member define an open cavity within the article; removing the binder; and sintering the article to form the vacuum insulator, wherein the vacuum insulator defines a vacuum environment in the cavity.Type: GrantFiled: November 13, 2020Date of Patent: July 25, 2023Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold
-
Patent number: 11697243Abstract: A method may include fused filament fabricating a fused filament fabricated component by delivering a softened filament to selected locations at or adjacent to a build surface. The softened filament may include a binder and a primary material. The binder is configured to release a secondary material upon heating at or above a conversion temperature. The method also may include heating the fused filament fabricated component to a temperature at or above the conversion temperature to sinter the primary material to form a sintered part and cause the binder to release the secondary material within the sintered part.Type: GrantFiled: November 13, 2020Date of Patent: July 11, 2023Assignee: Rolls-Royce CorporationInventors: Evan Raeker, Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu
-
Patent number: 11680753Abstract: In some examples, a method for additively manufacturing a heat pipe, the method including depositing, via a filament delivery device, a filament to form a heat pipe preform, wherein the filament includes a binder and a metal or alloy powder; and sintering the heat pipe preform to form the heat pipe, the heat pipe including an outer shell, a wicking region, and a vapor transport region defined by the metal or alloy.Type: GrantFiled: November 13, 2020Date of Patent: June 20, 2023Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold