Patents by Inventor Quinn Q. Tian

Quinn Q. Tian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8434723
    Abstract: An asymmetric tetrahedral vortex generator that provides for control of three-dimensional flow separation over an underlying surface by bringing high momentum outer region flow to the wall of the structure using the generated vortex. The energized near-wall flow remains attached to the structure surface significantly further downstream. The device produces a swirling flow with one stream-wise rotation direction which migrates span-wise. When optimized, the device produces very low base drag on structures by keeping flow attached on the leeside surface thereof. This device can: on hydraulic structures, prevent local scour, deflect debris, and reduce drag; improve heat transfer between a flow and an adjacent surface, i.e., heat exchanger or an air conditioner; reduce drag, flow separation, and associated acoustic noise on airfoils, hydrofoils, cars, boats, submarines, rotors, etc.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: May 7, 2013
    Assignee: Applied University Research, Inc.
    Inventors: Roger L. Simpson, K. Todd Lowe, Quinn Q. Tian
  • Patent number: 8348553
    Abstract: Disclosed is a manufactured three-dimensional convex-concave fairing with attached vortex generators, for hydraulic structures such as bridge piers and abutments, whose shape prevents the local scour problem around such hydraulic structures. The device is a conventionally made concrete or fiber-reinforced composite, or combination of both, vortex generator equipped hydrodynamic fairing that is fit or cast over an existing or new hydraulic structure around the base of the structure and above the footing. The vortex generators are positioned so as to energize decelerating near wall flow with higher-momentum outer layer flow. The result is a more steady, compact separation and wake and substantially mitigated scour inducing vortical flow.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: January 8, 2013
    Assignee: Applied University Research, Inc.
    Inventors: Roger L. Simpson, K. Todd Lowe, Quinn Q. Tian
  • Publication number: 20120134753
    Abstract: Disclosed is a manufactured three-dimensional convex-concave fairing with attached vortex generators, for hydraulic structures such as bridge piers and abutments, whose shape prevents the local scour problem around such hydraulic structures. The device is a conventionally made concrete or fiber-reinforced composite, or combination of both, vortex generator equipped hydrodynamic fairing that is fit or cast over an existing or new hydraulic structure around the base of the structure and above the footing. The vortex generators are positioned so as to energize decelerating near wall flow with higher-momentum outer layer flow. The result is a more steady, compact separation and wake and substantially mitigated scour inducing vortical flow.
    Type: Application
    Filed: May 26, 2011
    Publication date: May 31, 2012
    Inventors: Roger L. Simpson, K. Todd Lowe, Quinn Q. Tian
  • Publication number: 20110315248
    Abstract: An asymmetric tetrahedral vortex generator that provides for control of three-dimensional flow separation over an underlying surface by bringing high momentum outer region flow to the wall of the structure using the generated vortex. The energized near-wall flow remains attached to the structure surface significantly further downstream. The device produces a swirling flow with one stream-wise rotation direction which migrates span-wise. When optimized, the device produces very low base drag on structures by keeping flow attached on the leeside surface thereof. This device can: on hydraulic structures, prevent local scour, deflect debris, and reduce drag; improve heat transfer between a flow and an adjacent surface, i.e., heat exchanger or an air conditioner; reduce drag, flow separation, and associated acoustic noise on airfoils, hydrofoils, cars, boats, submarines, rotors, etc.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 29, 2011
    Inventors: Roger L. Simpson, K. Todd Lowe, Quinn Q. Tian