Patents by Inventor Qunyi Chen

Qunyi Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240256088
    Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
    Type: Application
    Filed: March 14, 2024
    Publication date: August 1, 2024
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Patent number: 11960683
    Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: April 16, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R. D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Patent number: 11885999
    Abstract: An optical construction includes a reflective polarizer and an optically diffusive film disposed on the reflective polarizer. The reflective polarizer includes an outer layer including a plurality of first particles partially protruding from a first major surface thereof to form a structured major surface. A first optically diffusive layer is conformably disposed on the structured major surface. The optically diffusive film includes a second optically diffusive layer including a plurality of nanoparticles dispersed therein, and a structured layer including a structured major surface. For a substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm, the second optically diffusive layer has an average specular transmittance Vs in the visible wavelength range and an average specular transmittance Is in the infrared wavelength range, where Is/Vs?2.5.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: January 30, 2024
    Assignee: 3M INNOVATION PROPERTIES COMPANY
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Publication number: 20230341615
    Abstract: An optical construction includes a reflective polarizer and an optically diffusive film disposed on the reflective polarizer. The reflective polarizer includes an outer layer including a plurality of first particles partially protruding from a first major surface thereof to form a structured major surface. A first optically diffusive layer is conformably disposed on the structured major surface. The optically diffusive film includes a second optically diffusive layer including a plurality of nanoparticles dispersed therein, and a structured layer including a structured major surface. For a substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm, the second optically diffusive layer has an average specular transmittance Vs in the visible wavelength range and an average specular transmittance Is in the infrared wavelength range, where Is/Vs?2.5.
    Type: Application
    Filed: May 4, 2021
    Publication date: October 26, 2023
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Publication number: 20230228918
    Abstract: An optically diffusive film includes an optical substrate layer with opposing first and second major surfaces; and an optical layer disposed on the second major surface of the optical substrate layer and including a structured major surface having a plurality of spaced apart elongated structures elongated along a same first direction and arranged at a substantially uniform density, each elongated structure including a peak such that, in a plane of a cross-section of the elongated structure that is parallel to the first direction and comprises the peak, the elongated structure has a substantially flat top region; wherein for substantially normally incident light and a visible wavelength range and an infrared wavelength range, the optical substrate layer has an average total transmittance or reflectance of greater than about 60% in the visible wavelength range and an average specular transmittance of greater than about 60% in the infrared wavelength range.
    Type: Application
    Filed: April 26, 2021
    Publication date: July 20, 2023
    Inventors: Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Matthew S. Cole, Bharat R. Acharya, Matthew E. Sousa, Robert D. Taylor, Benjamin J. Forsythe
  • Publication number: 20230228919
    Abstract: Optical films and stacks include at least one optically diffusive layer. The optically diffusive layer can include a plurality of nanoparticles and a polymeric material bonding the nanoparticles to each other to form a plurality of nanoparticle aggregates defining a plurality of voids therebetween. For substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm: in the visible wavelength range, the optical film or optically diffusive layer has an average specular transmittance Vs; and in the infrared wavelength range, the optical film or optically diffusive layer has an average total transmittance It and an average specular transmittance Is, Is/It?0.6, Is/Vs?2.5.
    Type: Application
    Filed: April 20, 2021
    Publication date: July 20, 2023
    Inventors: Matthew E. Sousa, Matthew S. Cole, Jeremy O. Swanson, Bharat R. Acharya, Jason S. Petaja, Anthony M. Renstrom, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford
  • Publication number: 20230214062
    Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 mn?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
    Type: Application
    Filed: May 4, 2021
    Publication date: July 6, 2023
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Patent number: D956620
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: July 5, 2022
    Assignee: EVERGRANDE NEW ENERGY AUTOMOTIVE INVESTMENT HOLDINGS GROUP CO., LTD.
    Inventors: Chi Fang, Qunyi Chen, Shiyi Chen, Yongxin Zhu, Jishu Xu, Xiaoming Zhong, Jintian Liu, Jiayun Huang
  • Patent number: D956621
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: July 5, 2022
    Assignee: EVERGRANDE NEW ENERGY AUTOMOTIVE INVESTMENT HOLDINGS GROUP CO., LTD.
    Inventors: Chi Fang, Qunyi Chen
  • Patent number: D956622
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: July 5, 2022
    Assignee: EVERGRANDE NEW ENERGY AUTOMOTIVE INVESTMENT HOLDINGS GROUP CO., LTD.
    Inventors: Chi Fang, Qunyi Chen, Shiyi Chen, Yongxin Zhu, Jishu Xu, Xiaoming Zhong, Jintian Liu, Jiayun Huang
  • Patent number: D956623
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: July 5, 2022
    Assignee: EVERGRANDE NEW ENERGY AUTOMOTIVE INVESTMENT HOLDINGS GROUP CO., LTD.
    Inventors: Chi Fang, Qunyi Chen, Yiping Chen, Yongxin Zhu, Jishu Xu
  • Patent number: D956624
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: July 5, 2022
    Assignee: EVERGRANDE NEW ENERGY AUTOMOTIVE INVESTMENT HOLDINGS GROUP CO., LTD.
    Inventors: Chi Fang, Qunyi Chen, Zhanping Wu, Yongxin Zhu, Jishu Xu, Lu Zhang
  • Patent number: D956625
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: July 5, 2022
    Assignee: EVERGRANDE NEW ENERGY AUTOMOTIVE INVESTMENT HOLDINGS GROUP CO., LTD.
    Inventors: Chi Fang, Qunyi Chen, Yiping Chen, Yongxin Zhu, Jishu Xu, Lijie Xu
  • Patent number: D956626
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: July 5, 2022
    Assignee: EVERGRANDE NEW ENERGY AUTOMOTIVE INVESTMENT HOLDINGS GROUP CO., LTD.
    Inventors: Chi Fang, Qunyi Chen, Yiping Chen, Yongxin Zhu, Jishu Xu, Lijie Xu
  • Patent number: D956627
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: July 5, 2022
    Assignee: EVERGRANDE NEW ENERGY AUTOMOTIVE INVESTMENT HOLDINGS GROUP CO., LTD.
    Inventors: Chi Fang, Qunyi Chen, Zhanping Wu, Yongxin Zhu, Jishu Xu, Lu Zhang
  • Patent number: D956628
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: July 5, 2022
    Assignee: EVERGRANDE NEW ENERGY AUTOMOTIVE INVESTMENT HOLDINGS GROUP CO., LTD.
    Inventors: Chi Fang, Qunyi Chen, Zhanping Wu, Yongxin Zhu, Jishu Xu, Lu Zhang