Patents by Inventor Qunzhu Li

Qunzhu Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230256427
    Abstract: A method for circulating a cooled regenerated catalyst comprises the following steps: a regenerated catalyst derived from a regenerator is cooled to 200-720° C. by a catalyst cooler, which either directly enters into a riser reactor without mixing with hot regenerated catalyst, or enters the same after mixing with another portion of uncooled hot regenerated catalyst and thereby obtaining a hybrid regenerated catalyst with its temperature lower than that of the regenerator; a contact reaction between a hydrocarbon raw materials and the catalyst is performed in the riser reactor; the reaction product is introduced into a settling vessel to separate the catalyst and oil gas; the separated catalyst ready for regeneration is stream-stripped in a stream stripping phase and enters the regenerator for regeneration through charring; after cooling, the regenerated catalyst returns to the riser reactor for recycling.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Inventors: Li LI, Qunzhu LI
  • Publication number: 20220401943
    Abstract: Disclosed are a catalyst pre-hydrocarbon-pooling method and a pre-hydrocarbon-pooling device, relating to the technical field of preparation of low carbon olefins. A regenerated catalyst enters a pre-hydrocarbon-pooling reactor, and a pre-hydrocarbon-pooling reaction occurs between the regenerated catalyst and an activation medium to form “hydrocarbon pool” active species. “Pre-hydrocarbon-pooling” treatment is performed on the regenerated catalyst by providing a pre-hydrocarbon-pooling device, so that the regenerated catalyst forms the “hydrocarbon pooled” active species and carbon deposition before entering into an oxygenate conversion reactor, by way of which “hydrocarbon pool” active species distribution and coke distribution of the catalyst in the conversion reactor are improved. This shortens or eliminates a reaction “induction period” and improves the catalytic activity and selectivity of the regenerated catalyst for a reaction of an oxygenate to low-carbon olefins.
    Type: Application
    Filed: November 9, 2020
    Publication date: December 22, 2022
    Inventors: Qunzhu Li, Ruiyun Li, Li Li
  • Publication number: 20220289643
    Abstract: Provided is a method for improving the selectivity of conversion of an oxygenate to low-carbon olefins. A regenerated catalyst from a regenerator enters a pre-hydrocarbon-pooling device where it comes into contact with an activation medium to undergo a pre-hydrocarbon-pooling reaction, forming “hydrocarbon pool” active species. The pre-hydrocarbon-pooled regenerated catalyst leaving the pre-hydrocarbon-pooling device enters a conversion reactor for recycling. By providing the pre-hydrocarbon-pooling device, and performing “pre-hydrocarbon-pooling” treatment on the regenerated catalyst, the regenerated catalyst is enabled to form “hydrocarbon pool” active species and carbon deposition before entering the conversion reactor.
    Type: Application
    Filed: November 9, 2020
    Publication date: September 15, 2022
    Inventors: Qunzhu Li, Ruiyun Li, Li Li
  • Publication number: 20220119718
    Abstract: Provided are a method for the catalytic conversion of hydrocarbons with a downer reactor and a device thereof. The specific process of the method is as follows: a raw material of hydrocarbons after being pre-heated (or not) and a low-temperature regenerant from a regenerant cooler entering an entry end of a downer reactor, flowing down along the reactor for reactions such as catalytic cracking, and a mixture of a reactive oil and gas and a catalyst descending to the end of the reactor for rapid separation, thereby achieving the rapid separation of the catalyst and the oil and gas. The main operation conditions thereof are as follows: the reaction temperature is 460 to 680° C., the reaction pressure is 0.11 to 0.4 MPa, the contact time is 0.05 to 2 seconds, and the weight ratio of the catalyst to the raw material (a catalyst-to-oil ratio) is 6 to 50.
    Type: Application
    Filed: January 22, 2020
    Publication date: April 21, 2022
    Inventor: Qunzhu Li
  • Publication number: 20210023547
    Abstract: A method for circulating a cooled regenerated catalyst comprises the following steps: a regenerated catalyst derived from a regenerator (5) is cooled to 200-720° C. by a catalyst cooler (8A), which either directly enters into a riser reactor (2) without mixing with hot regenerated catalyst, or enters the same after mixing with another portion of uncooled hot regenerated catalyst and thereby obtaining a hybrid regenerated catalyst with its temperature lower than that of the regenerator; a contact reaction between a hydrocarbon raw materials and the catalyst is performed in the riser reactor (2); the reaction product is introduced into a settling vessel (1) to separated the catalyst and oil gas; the separated catalyst ready for regeneration is stream-stripped in a stream stripping phase (1A) and enters the regenerator (5) for regeneration through charring; after cooling, the regenerated catalyst returns to the riser reactor (2) for recycling.
    Type: Application
    Filed: October 8, 2020
    Publication date: January 28, 2021
    Inventors: Li Li, Qunzhu Li
  • Patent number: 10864509
    Abstract: The present invention provides a method of cooling a regenerated catalyst and a device thereof, which employs low-line-speed operation, wherein a range of the superficial gas velocity is 0.005-0.7 m/s, wherein at least one fluidization wind distributor is provided, wherein the main fluidization wind enters the dense bed layer of the catalyst cooler from the distributor, and the heat removal load of the catalyst cooler and/or the temperature of the cold catalyst is controlled by adjusting the fluidization wind quantity. The method and a device thereof of the present invention has an extensive application range, and can be extensively used for various fluid catalytic cracking processes, including heavy oil catalytic cracking, wax oil catalytic cracking, light hydrocarbon catalytic conversion and the like, or used for other gas-solid fluidization reaction charring processes, including residual oil pretreating, methanol to olefin, methanol to aromatics, fluid coking, flexicoking and the like.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: December 15, 2020
    Inventor: Qunzhu Li
  • Publication number: 20200215525
    Abstract: The present invention provides a method of cooling a regenerated catalyst and a device thereof, which employs low-line-speed operation, wherein a range of the superficial gas velocity is 0.005-0.7 m/s, wherein at least one fluidization wind distributor is provided, wherein the main fluidization wind enters the dense bed layer of the catalyst cooler from the distributor, and the heat removal load of the catalyst cooler and/or the temperature of the cold catalyst is controlled by adjusting the fluidization wind quantity. The method and a device thereof of the present invention has an extensive application range, and can be extensively used for various fluid catalytic cracking processes, including heavy oil catalytic cracking, wax oil catalytic cracking, light hydrocarbon catalytic conversion and the like, or used for other gas-solid fluidization reaction charring processes, including residual oil pretreating, methanol to olefin, methanol to aromatics, fluid coking, flexicoking and the like.
    Type: Application
    Filed: March 16, 2020
    Publication date: July 9, 2020
    Inventor: Qunzhu LI
  • Patent number: 10625253
    Abstract: The present invention provides a method of cooling a regenerated catalyst and a device thereof, which employs low-line-speed operation, wherein a range of the superficial gas velocity is 0.005-0.7 m/s, wherein at least one fluidization wind distributor is provided, wherein the main fluidization wind enters the dense bed layer of the catalyst cooler from the distributor, and the heat removal load of the catalyst cooler and/or the temperature of the cold catalyst is controlled by adjusting the fluidization wind quantity. The method and a device thereof of the present invention has an extensive application range, and can be extensively used for various fluid catalytic cracking processes, including heavy oil catalytic cracking, wax oil catalytic cracking, light hydrocarbon catalytic conversion and the like, or used for other gas-solid fluidization reaction charring processes, including residual oil pretreating, methanol to olefin, methanol to aromatics, fluid coking, flexicoking and the like.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: April 21, 2020
    Inventor: Qunzhu Li
  • Publication number: 20180021769
    Abstract: The present invention provides a method of cooling and cycling a regenerated catalyst. The regenerated catalyst that is from the regenerator is cooled by the catalyst cooler to 200-720° C., and without being mixed with the hot regenerated catalyst directly enters a riser reactor, or mixes with another part of hot regenerated catalyst that has not been cooled to obtain a mixed regenerated catalyst with a temperature below the regenerator temperature, and enters the riser reactor. The hydrocarbon raw material performs the contact reaction with the catalyst in the riser reactor, a reactant stream enters a settler to perform a separation of the catalyst and an oil gas, the separated spent catalyst is steam stripped by a steam stripping section and enters a regenerator to be charring regenerated, and the regenerated catalyst after being cooled returns to the riser reactor to be circularly used.
    Type: Application
    Filed: January 6, 2016
    Publication date: January 25, 2018
    Inventor: Qunzhu Li
  • Publication number: 20170354963
    Abstract: The present invention provides a method of cooling a regenerated catalyst and a device thereof, which employs low-line-speed operation, wherein a range of the superficial gas velocity is 0.005-0.7 m/s, wherein at least one fluidization wind distributor is provided, wherein the main fluidization wind enters the dense bed layer of the catalyst cooler from the distributor, and the heat removal load of the catalyst cooler and/or the temperature of the cold catalyst is controlled by adjusting the fluidization wind quantity. The method and a device thereof of the present invention has an extensive application range, and can be extensively used for various fluid catalytic cracking processes, including heavy oil catalytic cracking, wax oil catalytic cracking, light hydrocarbon catalytic conversion and the like, or used for other gas-solid fluidization reaction charring processes, including residual oil pretreating, methanol to olefin, methanol to aromatics, fluid coking, flexicoking and the like.
    Type: Application
    Filed: January 6, 2016
    Publication date: December 14, 2017
    Inventor: Qunzhu Li
  • Publication number: 20120298556
    Abstract: A method for circulating a cooled regenerated catalyst comprises the following steps: a regenerated catalyst derived from a regenerator (5) is cooled to 200-720° C. by a catalyst cooler (8A), which either directly enters into a riser reactor (2) without mixing with hot regenerated catalyst, or enters the same after mixing with another portion of uncooled hot regenerated catalyst and thereby obtaining a hybrid regenerated catalyst with its temperature lower than that of the regenerator; a contact reaction between a hydrocarbon raw materials and the catalyst is performed in the riser reactor (2); the reaction product is introduced into a settling vessel (1) to separated the catalyst and oil gas; the separated catalyst ready for regeneration is stream-stripped in a stream stripping phase (1A) and enters the regenerator (5) for regeneration through charring; after cooling, the regenerated catalyst returns to the riser reactor (2) for recycling.
    Type: Application
    Filed: February 11, 2010
    Publication date: November 29, 2012
    Inventors: Li Li, Qunzhu Li