Patents by Inventor Quoc V. Le
Quoc V. Le has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11853677Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.Type: GrantFiled: December 15, 2022Date of Patent: December 26, 2023Assignee: Google LLCInventors: Anna Darling Goldie, Azalia Mirhoseini, Ebrahim Songhori, Wenjie Jiang, Shen Wang, Roger David Carpenter, Young-Joon Lee, Mustafa Nazim Yazgan, Chian-min Richard Ho, Quoc V. Le, James Laudon, Jeffrey Adgate Dean, Kavya Srinivasa Setty, Omkar Pathak
-
Patent number: 11847541Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. One of the methods includes obtaining a training data set for training a machine learning model, the training data set comprising a plurality of training inputs; determining a plurality of data augmentation policies, wherein each data augmentation policy defines a procedure for processing a training input to generate a transformed training input; for each data augmentation policy, training the machine learning model using the data augmentation policy; determining, for each data augmentation policy, a quality measure of the machine learning model that has been trained using the data augmentation policy; and selecting a final data augmentation policy based using the quality measures of the machine learning models.Type: GrantFiled: December 20, 2021Date of Patent: December 19, 2023Assignee: Google LLCInventors: Jonathon Shlens, Quoc V. Le, Ekin Dogus Cubuk, Barret Zoph
-
Publication number: 20230394328Abstract: Example embodiments of aspects of the present disclosure provide an example computer-implemented method for improved prompting of a machine-learned model. The example method can include obtaining an instructive sequence descriptive of an instructive query, an instructive response, and an instructive trace of intermediate states from the instructive query to the instructive response. The example method can include inputting, to a machine-learned model, the instructive sequence and an operative query, wherein the machine-learned model is configured to process the operative query with attention over the instructive sequence. The example method can include generating, using the machine-learned model and responsive to the operative query, an operative response.Type: ApplicationFiled: August 5, 2022Publication date: December 7, 2023Inventors: Jason Weng Wei, Dengyong Zhou, Dale Eric Schuurmans, Quoc V. Le, Maarten Paul Bosma, Ed Huai-Hsin Chi, Olivier Jean Andrè Bousquet, Le Hou, Nathan Kemp Sekiguchi Scales, David J. Bieber, Charles Aloysius Sutton, Nathanael Martin Schärli, Augustus Quadrozzi Odena, Sharan Ajit Narang, Guy Gur-Ari Krakover, Aakanksha Chowdhery, Aitor Lewkowycz, Jiageng Luan, David Martin Dohan, Henryk Michalewski, Jacob Austin, Anders Johan Andreassen, Maxwell Isaac Nye, Xuezhi Wang
-
Patent number: 11829874Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes generating, using a controller neural network, a batch of output sequences, each output sequence in the batch defining a respective architecture of a child neural network that is configured to perform a particular neural network task; for each output sequence in the batch: training a respective instance of the child neural network having the architecture defined by the output sequence; evaluating a performance of the trained instance of the child neural network on the particular neural network task to determine a performance metric for the trained instance of the child neural network on the particular neural network task; and using the performance metrics for the trained instances of the child neural network to adjust the current values of the controller parameters of the controller neural network.Type: GrantFiled: June 7, 2021Date of Patent: November 28, 2023Assignee: Google LLCInventors: Barret Zoph, Quoc V. Le
-
Publication number: 20230368024Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes generating, using a controller neural network, a batch of output sequences, each output sequence in the batch defining a respective architecture of a child neural network that is configured to perform a particular neural network task; for each output sequence in the batch: training a respective instance of the child neural network having the architecture defined by the output sequence; evaluating a performance of the trained instance of the child neural network on the particular neural network task to determine a performance metric for the trained instance of the child neural network on the particular neural network task; and using the performance metrics for the trained instances of the child neural network to adjust the current values of the controller parameters of the controller neural network.Type: ApplicationFiled: July 26, 2023Publication date: November 16, 2023Inventors: Barret Zoph, Quoc V. Le
-
Publication number: 20230359895Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network to perform a machine learning task using a momentum and sign based optimizer.Type: ApplicationFiled: May 5, 2023Publication date: November 9, 2023Inventors: Xiangning Chen, Chen Liang, Da Huang, Esteban Alberto Real, Yao Liu, Kaiyuan Wang, Yifeng Lu, Quoc V. Le
-
Publication number: 20230359862Abstract: A computer-implemented method for performing computer vision with reduced computational cost and improved accuracy can include obtaining, by a computing system including one or more computing devices, input data comprising an input tensor having one or more dimensions, providing, by the computing system, the input data to a machine-learned convolutional attention network, the machine-learned convolutional attention network including two or more network stages, and, in response to providing the input data to the machine-learned convolutional attention network, receiving, by the computing system, a machine-learning prediction from the machine-learned convolutional attention network. The convolutional attention network can include at least one attention block, wherein the attention block includes a relative attention mechanism, the relative attention mechanism including the sum of a static convolution kernel with an adaptive attention matrix.Type: ApplicationFiled: July 19, 2023Publication date: November 9, 2023Inventors: Zihang Dai, Mingxing Tan, Quoc V. Le, Hanxiao Liu
-
Patent number: 11803747Abstract: A method for determining a placement for machine learning model operations across multiple hardware devices is described.Type: GrantFiled: May 20, 2020Date of Patent: October 31, 2023Assignee: Google LLCInventors: Samuel Bengio, Mohammad Norouzi, Benoit Steiner, Jeffrey Adgate Dean, Hieu Hy Pham, Azalia Mirhoseini, Quoc V. Le, Naveen Kumar, Yuefeng Zhou, Rasmus Munk Larsen
-
Patent number: 11797839Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network using a priority queue. One of the methods includes maintaining data identifying a set of K output sequences that were previously generated; selecting at least one of the output sequences from the set of output sequences; for each selected output sequence, determining a respective score; determining, for each selected sequence, a respective first update to the current values of the controller parameters; generating a batch of new output sequences using the controller neural network; obtaining a respective reward for each of the new output sequences; determining, from the new output sequences and the output sequences in the maintained data, the K output sequences that have the highest rewards; and modifying the maintained data.Type: GrantFiled: October 29, 2018Date of Patent: October 24, 2023Assignee: Google LLCInventors: Mohammad Norouzi, Daniel Aaron Abolafia, Quoc V. Le
-
Publication number: 20230297580Abstract: According to various implementations, generally disclosed herein is a hybrid and hierarchical neural architecture search (NAS) approach. The approach includes performing a search space partitioning scheme to divide the search space into sub-search spaces. The approach further includes performing a first type of NAS, such as a Multi-trial NAS, to cover a search across the sub-search spaces. The approach also includes performing a second type of NAS, such as a One-Shot NAS, to cover each sub-search space. The approach further includes automatically stopping the second type of NAS based on one or more early stopping criteria.Type: ApplicationFiled: April 15, 2022Publication date: September 21, 2023Inventors: Sheng Li, Garrett Axel Andersen, Norman Paul Jouppi, Quoc V. Le, Liqun Cheng, Parthasarathy Ranganathan, Julian Paul Grady, Yang Li, Martin Wicke, Yifeng Lu, Yun Ni, Kun Wang
-
Patent number: 11755883Abstract: A computer-implemented method for performing computer vision with reduced computational cost and improved accuracy can include obtaining, by a computing system including one or more computing devices, input data comprising an input tensor having one or more dimensions, providing, by the computing system, the input data to a machine-learned convolutional attention network, the machine-learned convolutional attention network including two or more network stages, and, in response to providing the input data to the machine-learned convolutional attention network, receiving, by the computing system, a machine-learning prediction from the machine-learned convolutional attention network. The convolutional attention network can include at least one attention block, wherein the attention block includes a relative attention mechanism, the relative attention mechanism including the sum of a static convolution kernel with an adaptive attention matrix.Type: GrantFiled: May 27, 2022Date of Patent: September 12, 2023Assignee: GOOGLE LLCInventors: Zihang Dai, Hanxiao Liu, Mingxing Tan, Quoc V. Le
-
Publication number: 20230259784Abstract: A method for receiving training data for training a neural network (NN) to perform a machine learning (ML) task and for determining, using the training data, an optimized NN architecture for performing the ML task is described. Determining the optimized NN architecture includes: maintaining population data comprising, for each candidate architecture in a population of candidate architectures, (i) data defining the candidate architecture, and (ii) data specifying how recently a neural network having the candidate architecture has been trained while determining the optimized neural network architecture; and repeatedly performing multiple operations using each of a plurality of worker computing units to generate a new candidate architecture based on a selected candidate architecture having the best measure of fitness, adding the new candidate architecture to the population, and removing from the population the candidate architecture that was trained least recently.Type: ApplicationFiled: April 27, 2023Publication date: August 17, 2023Inventors: Yanping Huang, Alok Aggarwal, Quoc V. Le, Esteban Alberto Real
-
Publication number: 20230252327Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes generating, using a controller neural network having controller parameters and in accordance with current values of the controller parameters, a batch of output sequences. The method includes, for each output sequence in the batch: generating an instance of a child convolutional neural network (CNN) that includes multiple instances of a first convolutional cell having an architecture defined by the output sequence; training the instance of the child CNN to perform an image processing task; and evaluating a performance of the trained instance of the child CNN on the task to determine a performance metric for the trained instance of the child CNN; and using the performance metrics for the trained instances of the child CNN to adjust current values of the controller parameters of the controller neural network.Type: ApplicationFiled: April 20, 2023Publication date: August 10, 2023Inventors: Vijay Vasudevan, Barret Zoph, Jonathon Shlens, Quoc V. Le
-
Publication number: 20230244938Abstract: An example method for pretraining a machine-learned model is provided. The example method includes obtaining a plurality of different combinations of configuration parameters of a pretraining objective framework. The example method includes generating, using the pretraining objective framework, a plurality of corrupted training examples from one or more training examples, wherein the plurality of corrupted training examples are respectively generated according to the plurality of different combinations. The example method includes inputting the plurality of corrupted training examples into the machine-learned model, wherein the machine-learned model is configured to generate uncorrupted subportions corresponding to corrupted subportions of the corrupted training examples. The example method includes obtaining, from the machine-learned model, a plurality of outputs respectively generated by the machine-learned model based on the plurality of corrupted training examples.Type: ApplicationFiled: January 27, 2023Publication date: August 3, 2023Inventors: Jason Weng Wei, Dengyong Zhou, Xuezhi Wang, Dale Eric Schuurmans, Quoc V. Le, Maarten Paul Bosma, Ed Huai-Hsin Chi, Olivier Jean Andrè Bousquet, Le Hou, Charles Aloysius Sutton, Nathanael Martin Schärli, Nathan Kemp Sekiguchi Scales, Augustus Quadrozzi Odena, Sharan Ajit Narang, Guy Gur-Ari Krakover, Aakanksha Chowdhery, David Martin Dohan, Aitor Lewkowycz, Henryk Michalewski, Jiageng Luan, David J. Bieber, Jacob Austin, Anders Johan Andreassen, Maxwell Isaac Nye, Yi Tay, Mostafa Dehghani
-
Patent number: 11714857Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining, for each of one or more categorical features, a respective vocabulary of categorical feature values of the categorical feature that should be active during processing of inputs by a machine learning model. In one aspect, a method comprises: generating a batch of output sequences, each output sequence in the batch specifying, for each of the categorical features, a respective vocabulary of categorical feature values of the categorical feature that should be active; for each output sequence in the batch, determining a performance metric of the machine learning model on a machine learning task after the machine learning model has been trained to perform the machine learning task with only the respective vocabulary of categorical feature values of each categorical feature specified by the output sequence being active.Type: GrantFiled: December 7, 2022Date of Patent: August 1, 2023Assignee: Google LLCInventors: Cong Li, Jay Adams, Manas Joglekar, Pranav Khaitan, Quoc V. Le, Mei Chen
-
Publication number: 20230205994Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing a machine learning task on an input to generate an output. In one aspect, one of the method includes receiving input data that describes an input of a machine learning task; receiving candidate output data that describes a set of candidate classification outputs of the machine learning task for the input; generating an input sequence that includes the input and the set of candidate classification outputs; processing the input sequence using a neural network to generate a network output that specifies a respective score for each candidate classification output in the set of candidate classification outputs; and generating an output of the machine learning task for the input, comprising selecting, as the output, a selected candidate classification output from the set of candidate classification outputs using the respective scores.Type: ApplicationFiled: December 23, 2021Publication date: June 29, 2023Inventors: Jason Weng Wei, Maarten Paul Bosma, Yuzhe Zhao, JR., Kelvin Gu, Quoc V. Le
-
Patent number: 11669744Abstract: A method for receiving training data for training a neural network (NN) to perform a machine learning (ML) task and for determining, using the training data, an optimized NN architecture for performing the ML task is described. Determining the optimized NN architecture includes: maintaining population data comprising, for each candidate architecture in a population of candidate architectures, (i) data defining the candidate architecture, and (ii) data specifying how recently a neural network having the candidate architecture has been trained while determining the optimized neural network architecture; and repeatedly performing multiple operations using each of a plurality of worker computing units to generate a new candidate architecture based on a selected candidate architecture having the best measure of fitness, adding the new candidate architecture to the population, and removing from the population the candidate architecture that was trained least recently.Type: GrantFiled: September 14, 2021Date of Patent: June 6, 2023Assignee: Google LLCInventors: Yanping Huang, Alok Aggarwal, Quoc V. Le, Esteban Alberto Real
-
Publication number: 20230154161Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using memory-optimized contrastive learning to train image encoder and text encoder neural networks.Type: ApplicationFiled: November 16, 2022Publication date: May 18, 2023Inventors: Hieu Hy Pham, Zihang Dai, Golnaz Ghiasi, Hanxiao Liu, Wei Yu, Mingxing Tan, Quoc V. Le
-
Patent number: 11651259Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes generating, using a controller neural network having controller parameters and in accordance with current values of the controller parameters, a batch of output sequences. The method includes, for each output sequence in the batch: generating an instance of a child convolutional neural network (CNN) that includes multiple instances of a first convolutional cell having an architecture defined by the output sequence; training the instance of the child CNN to perform an image processing task; and evaluating a performance of the trained instance of the child CNN on the task to determine a performance metric for the trained instance of the child CNN; and using the performance metrics for the trained instances of the child CNN to adjust current values of the controller parameters of the controller neural network.Type: GrantFiled: November 5, 2019Date of Patent: May 16, 2023Assignee: Google LLCInventors: Vijay Vasudevan, Barret Zoph, Jonathon Shlens, Quoc V. Le
-
Publication number: 20230144138Abstract: A method for searching for an output machine learning (ML) algorithm to perform an ML task is described. The method comprising: receiving data specifying an input ML algorithm; receiving data specifying a search algorithm that searches for candidate ML algorithms and an evaluation function that evaluates the performance of candidate ML algorithms; generating data representing a symbolic tree from the input ML algorithm; generating data representing a hyper symbolic tree from the symbolic tree; searching an algorithm search space that defines a set of possible concrete symbolic trees from the hyper symbolic tree for candidate ML algorithms and training the candidate ML algorithms to determine a respective performance metric for each candidate ML algorithm; and selecting one or more trained candidate ML algorithms among the trained candidate ML algorithms based on the determined performance metrics.Type: ApplicationFiled: June 4, 2021Publication date: May 11, 2023Inventors: Daiyi Peng, Yifeng Lu, Quoc V. Le