Publication number: 20230244938
Abstract: An example method for pretraining a machine-learned model is provided. The example method includes obtaining a plurality of different combinations of configuration parameters of a pretraining objective framework. The example method includes generating, using the pretraining objective framework, a plurality of corrupted training examples from one or more training examples, wherein the plurality of corrupted training examples are respectively generated according to the plurality of different combinations. The example method includes inputting the plurality of corrupted training examples into the machine-learned model, wherein the machine-learned model is configured to generate uncorrupted subportions corresponding to corrupted subportions of the corrupted training examples. The example method includes obtaining, from the machine-learned model, a plurality of outputs respectively generated by the machine-learned model based on the plurality of corrupted training examples.
Type:
Application
Filed:
January 27, 2023
Publication date:
August 3, 2023
Inventors:
Jason Weng Wei, Dengyong Zhou, Xuezhi Wang, Dale Eric Schuurmans, Quoc V. Le, Maarten Paul Bosma, Ed Huai-Hsin Chi, Olivier Jean Andrè Bousquet, Le Hou, Charles Aloysius Sutton, Nathanael Martin Schärli, Nathan Kemp Sekiguchi Scales, Augustus Quadrozzi Odena, Sharan Ajit Narang, Guy Gur-Ari Krakover, Aakanksha Chowdhery, David Martin Dohan, Aitor Lewkowycz, Henryk Michalewski, Jiageng Luan, David J. Bieber, Jacob Austin, Anders Johan Andreassen, Maxwell Isaac Nye, Yi Tay, Mostafa Dehghani