Patents by Inventor Qusai Darugar

Qusai Darugar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180194620
    Abstract: A method of making a thin film substrate involves exposing carbon nanostructures to a crosslinker to crosslink the carbon nanostructures. The crosslinked carbon nanostructures are recovered and disposed on a support substrate. A thin film substrate includes crosslinked carbon nanostructures on a support substrate. The crosslinked carbon nanostructures have a crosslinker between the carbon nanostructures. A method of performing surface enhanced Raman spectroscopy (SERS) on a SERS-active analyte involves providing a SERS-active analyte on such a thin film substrate, exposing the thin film substrate to Raman scattering, and detecting the SERS-active analyte.
    Type: Application
    Filed: January 11, 2018
    Publication date: July 12, 2018
    Inventors: Darryl N. Ventura, Rostyslav Dolog, Sankaran Murugesan, Radhika Suresh, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 9958394
    Abstract: A system and method for estimating a concentration of monoethanolamine (MEA) in a fluid. A substrate for supporting a sample of the fluid during testing includes a carbon nanotube mat layer, a silver nanowire layer disposed on the carbon nanotube mat layer, and a chemical enhancer layer disposed on the silver nanowire layer. A sample of the fluid is placed on the substrate, and the fluid sample is radiated with electromagnetic radiation at a selected energy level. A detector measures a Raman spectrum emitted from the sample in response to the electromagnetic radiation. A processor estimates the concentration of MEA in the sample from the Raman spectrum and adds a corrosion inhibitor to the fluid in an amount based on the estimated concentration of MEA to reduce the concentration of MEA in the fluid.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: May 1, 2018
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Sankaran Murugesan, Radhika Suresh, Darryl N. Ventura, Bradley G. Harrell, Valery N. Khabashesku, Qusai A. Darugar
  • Publication number: 20180024066
    Abstract: A system and method for estimating a concentration of monoethanolamine (MEA) in a fluid. A substrate for supporting a sample of the fluid during testing includes a carbon nanotube mat layer, a silver nanowire layer disposed on the carbon nanotube mat layer, and a chemical enhancer layer disposed on the silver nanowire layer. A sample of the fluid is placed on the substrate, and the fluid sample is radiated with electromagnetic radiation at a selected energy level. A detector measures a Raman spectrum emitted from the sample in response to the electromagnetic radiation. A processor estimates the concentration of MEA in the sample from the Raman spectrum and adds a corrosion inhibitor to the fluid in an amount based on the estimated concentration of MEA to reduce the concentration of MEA in the fluid.
    Type: Application
    Filed: August 15, 2017
    Publication date: January 25, 2018
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Sankaran Murugesan, Radhika Suresh, Darryl N. Ventura, Bradley G. Harrell, Valery N. Khabashesku, Qusai A. Darugar
  • Publication number: 20170137704
    Abstract: In one aspect, a method of stimulating flow of a fluid present in a subsurface reservoir to a wellbore is provided, which method, in one non-limiting embodiment, may include providing a working fluid that includes a heated base fluid and heated nanoparticles, wherein the nanoparticle have a core and a shell; supplying the working fluid into a selected section of the subsurface reservoir; allowing the heated nanoparticles to transfer heat to the fluid in the subsurface reservoir to stimulate flow of the fluid from the reservoir to the wellbore.
    Type: Application
    Filed: February 1, 2017
    Publication date: May 18, 2017
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Oleg A. Mazyar, Valery N. Khabashesku, Qusai A. Darugar
  • Publication number: 20160376509
    Abstract: Base oil can be recovered from contaminated O/SBF by combining a chemical process with a mechanical process. The chemical treatment includes adding a demulsifier, an anionic surfactant, a non-ionic surfactant and/or a mutual solvent to the contaminated O/SBF in an amount effective to separate the base oil from the contaminated O/SBF fluid followed by mechanical separation of oil from water, and optionally from any solids present. The recovered base oil (i.e. conventional drilling fluid, conductive drilling fluid and constant rheology drilling fluid, etc.) may then be reformulated to make a new OBM of the same type from which the base oil was recovered, or as a fuel for engines.
    Type: Application
    Filed: June 22, 2016
    Publication date: December 29, 2016
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: QUSAI A. DARUGAR, Billy M. Dye, Ibraheem T. Hussain, Melissa V. McCray
  • Publication number: 20160017202
    Abstract: Capped nanoparticles may be added to an oil-based fluid to improve the electrical conductivity of the oil-based fluid. The oil-based fluid may be a drilling fluid, a completion fluid, a drill-in fluid, a stimulation fluid, a servicing fluid, and combinations thereof. In a non-limiting embodiment, the oil-based fluid composition may be circulated in a subterranean reservoir wellbore.
    Type: Application
    Filed: July 21, 2015
    Publication date: January 21, 2016
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Jianzhong Yang, Alyssa Renee Garcia, Joseph J. Arensdorf, Dennis K. Clapper, Qusai A Darugar
  • Patent number: 7778301
    Abstract: Disclosed is a lasing complex comprising a room temperature solution containing cadmium sulfide (CdS) quantum dots. Optical gain has been observed in CdS nanocrystal quantum dots in strong confinement regime in toluene solution at room temperature using femtosecond transient absorption techniques. The optical gain lifetime is measured to be 20 picoseconds under pump fluence of 0.77 mJ/cm2. The relative lower gain threshold compared to that of CdSe quantum dots is attributed to the long lifetime of fluorescence and biexcitons and the relatively sharp photoluminescence linewidth. The CdS nanocrystals are excellent gain media for semiconductor quantum dot based blue lasers.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: August 17, 2010
    Assignee: Georgia Tech Research Corporation
    Inventors: Mostafa A. El-Sayed, Wei Qian, Qusai Darugar
  • Publication number: 20090084985
    Abstract: Disclosed is a lasing complex comprising a room temperature solution containing cadmium sulfide (CdS) quantum dots. Optical gain has been observed in CdS nanocrystal quantum dots in strong confinement regime in toluene solution at room temperature using femtosecond transient absorption techniques. The optical gain lifetime is measured to be 20 picoseconds under pump fluence of 0.77 mJ/cm2. The relative lower gain threshold compared to that of CdSe quantum dots is attributed to the long lifetime of fluorescence and biexcitons and the relatively sharp photoluminescence linewidth. The CdS nanocrystals are excellent gain media for semiconductor quantum dot based blue lasers.
    Type: Application
    Filed: June 25, 2008
    Publication date: April 2, 2009
    Inventors: Moustafa A. El-Sayed, Wei Qian, Qusai Darugar