Patents by Inventor R Andrew Wall

R Andrew Wall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10746994
    Abstract: The technology provides decoupling an aspheric optical element from a birdbath optical element in a near-eye display (NED) device. One or more aspheric lens are used with a spherical birdbath reflective mirror in a projection light engine of a NED device. A projection light engine provides image light (or other information), by way of the spherical birdbath reflective mirror and at least one aspheric lens, to a near-eye display of the NED device. The spherical birdbath reflective mirror collimates and reflects the image light to an exit pupil external to the projection light engine. Decoupling the aspheric optical element from the spherical birdbath reflective mirror may enable high modulation transfer function (MTF) and improved manufacturability of the projection light engine. The NED device having aspheric optical elements decoupled from a birdbath optical element may be positioned by a support structure in a head-mounted display (HMD) or head-up display (HUD).
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: August 18, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Yarn Chee Poon, Joshua A Hudman, R Andrew Wall, Scott McEldowney, Steven John Robbins
  • Patent number: 10551616
    Abstract: A display device system includes a display engine and optical waveguide. The display engine includes an image former, that produces light corresponding to an image, and one or more lens groups that collimate the light corresponding to the image and outputs the light from the display engine. Each lens group includes one or more lenses that share a mechanical axis. The light corresponding to the image produced by the image former has an optical axis ray coincident with a principal ray of the light that originates at a center of the image produced by the image former. At least one lens group has its mechanical axis tilted relative to the optical axis ray of the light corresponding to the image produced by the image former, to prevent a ghost image from being formed by light corresponding to the image that is reflected-back from the waveguide toward the display engine.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: February 4, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: R. Andrew Wall, Dmitry Reshidko
  • Patent number: 10359627
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide. The apparatus further includes an adjacent planar optical component to provide a more uniform intensity distribution compared to if the adjacent planar optical component were absent.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: July 23, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: R. Andrew Wall, Scott Woltman, Steven John Robbins, Xinye Lou, Gangok Lee, Yarn Chee Poon, Tuomas Vallius, Pasi Kostamo, Tapani Levola, Yijing Fu
  • Patent number: 10310268
    Abstract: An apparatus, for use in replicating an image associated with an input-pupil to an output-pupil, comprises an optical waveguide including a bulk-substrate, an input-coupler and an output-coupler. The bulk-substrate includes first and second major sides and peripheral sides. The input-coupler couples, into the waveguide, light corresponding to the image associated with the input-pupil. The output-coupler couples, out of the waveguide, light corresponding to the image that has traveled through the waveguide from the input-coupler to the output-coupler at least in part by way of TIR. At least one of the peripheral sides includes first and second surfaces that define first and second planes angled 45 degrees relative to one another. Such a peripheral side provides for effective recycling of light that would otherwise leak out of the waveguide through the peripheral side.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: June 4, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: R. Andrew Wall, Dmitry Reshidko
  • Patent number: 10261320
    Abstract: Examples are disclosed that relate to mixed reality display devices. One example provides a head-mounted display device comprising, a display, a lens system, and a curved Fresnel combiner. The curved Fresnel combiner is configured to direct light received from the display via the lens system toward an eyebox, and is at least partially transmissive to background light.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 16, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Bernard C. Kress, R. Andrew Wall
  • Publication number: 20180164583
    Abstract: A display device system includes a display engine and optical waveguide. The display engine includes an image former, that produces light corresponding to an image, and one or more lens groups that collimate the light corresponding to the image and outputs the light from the display engine. Each lens group includes one or more lenses that share a mechanical axis. The light corresponding to the image produced by the image former has an optical axis ray coincident with a principal ray of the light that originates at a center of the image produced by the image former. At least one lens group has its mechanical axis tilted relative to the optical axis ray of the light corresponding to the image produced by the image former, to prevent a ghost image from being formed by light corresponding to the image that is reflected-back from the waveguide toward the display engine.
    Type: Application
    Filed: December 9, 2016
    Publication date: June 14, 2018
    Inventors: R. Andrew Wall, Dmitry Reshidko
  • Publication number: 20180157042
    Abstract: An apparatus, for use in replicating an image associated with an input-pupil to an output-pupil, comprises an optical waveguide including a bulk-substrate, an input-coupler and an output-coupler. The bulk-substrate includes first and second major sides and peripheral sides. The input-coupler couples, into the waveguide, light corresponding to the image associated with the input-pupil. The output-coupler couples, out of the waveguide, light corresponding to the image that has traveled through the waveguide from the input-coupler to the output-coupler at least in part by way of TIR. At least one of the peripheral sides includes first and second surfaces that define first and second planes angled 45 degrees relative to one another. Such a peripheral side provides for effective recycling of light that would otherwise leak out of the waveguide through the peripheral side.
    Type: Application
    Filed: December 6, 2016
    Publication date: June 7, 2018
    Inventors: R. Andrew Wall, Dmitry Reshidko
  • Patent number: 9915825
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide. The apparatus further includes a volume layer, embedded between first and second major planar surfaces of the bulk-substrate, configured to cause light that is output by the output-coupler to have a more uniform intensity distribution compared to if the volume layer were absent.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: March 13, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Steven John Robbins, Scott Woltman, R. Andrew Wall, Yarn Chee Poon
  • Patent number: 9891436
    Abstract: A near eye or heads up display system includes a display engine, at least two optical waveguides, and a respective coating on at least one of the major surfaces of at least one of the waveguides. At least one such coating has a low reflectance for light within a specific wavelength range for the waveguide and incident on a major surface of the waveguide on which the coating is located at an angle below a low threshold angle relative to a normal, and has a high reflectance for light within the specific wavelength range for the waveguide that is incident on the major surface on which the coating is located at an angle above a high threshold angle relative to the normal.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: February 13, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: R. Andrew Wall, Tuomas Vallius, Pasi Pietila, Keita Oka
  • Publication number: 20180003972
    Abstract: Examples are disclosed that relate to mixed reality display devices. One example provides a head-mounted display device comprising, a display, a lens system, and a curved Fresnel combiner. The curved Fresnel combiner is configured to direct light received from the display via the lens system toward an eyebox, and is at least partially transmissive to background light.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Bernard C. Kress, R. Andrew Wall
  • Patent number: 9791696
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: October 17, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Scott Woltman, Steven John Robbins, R. Andrew Wall, Tuomas Vallius, Tapani Levola, Pasi Kostamo
  • Publication number: 20170235142
    Abstract: A near eye or heads up display system includes a display engine, at least two optical waveguides, and a respective coating on at least one of the major surfaces of at least one of the waveguides. At least one such coating has a low reflectance for light within a specific wavelength range for the waveguide and incident on a major surface of the waveguide on which the coating is located at an angle below a low threshold angle relative to a normal, and has a high reflectance for light within the specific wavelength range for the waveguide that is incident on the major surface on which the coating is located at an angle above a high threshold angle relative to the normal.
    Type: Application
    Filed: February 11, 2016
    Publication date: August 17, 2017
    Inventors: R. Andrew Wall, Tuomas Vallius, Pasi Pietila, Keita Oka
  • Publication number: 20170131551
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide. The apparatus further includes a volume layer, embedded between first and second major planar surfaces of the bulk-substrate, configured to cause light that is output by the output-coupler to have a more uniform intensity distribution compared to if the volume layer were absent.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: Steven John Robbins, Scott Woltman, R. Andrew Wall, Yarn Chee Poon
  • Publication number: 20170131546
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: Scott Woltman, Steven John Robbins, R. Andrew Wall, Tuomas Vallius, Tapani Levola, Pasi Kostamo
  • Publication number: 20170131545
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide. The apparatus further includes an adjacent planar optical component to provide a more uniform intensity distribution compared to if the adjacent planar optical component were absent.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: R. Andrew Wall, Scott Woltman, Steven John Robbins, Xinye Lou, Gangok Lee, Yarn Chee Poon, Tuomas Vallius, Pasi Kostamo, Tapani Levola, Yijing Fu
  • Publication number: 20160041390
    Abstract: The technology provides decoupling an aspheric optical element from a birdbath optical element in a near-eye display (NED) device. One or more aspheric lens are used with a spherical birdbath reflective mirror in a projection light engine of a NED device. A projection light engine provides image light (or other information), by way of the spherical birdbath reflective mirror and at least one aspheric lens, to a near-eye display of the NED device. The spherical birdbath reflective mirror collimates and reflects the image light to an exit pupil external to the projection light engine. Decoupling the aspheric optical element from the spherical birdbath reflective mirror may enable high modulation transfer function (MTF) and improved manufacturability of the projection light engine. The NED device having aspheric optical elements decoupled from a birdbath optical element may be positioned by a support structure in a head-mounted display (HMD) or head-up display (HUD).
    Type: Application
    Filed: August 7, 2014
    Publication date: February 11, 2016
    Inventors: Yarn Chee Poon, Joshua A Hudman, R Andrew Wall, Scott McEldowney, Steven John Robbins