Patents by Inventor R. Glenn Brosch

R. Glenn Brosch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120001015
    Abstract: By sharing tasks between the CV and the KVs, the MKV interceptor provides a cost-effective missile defense system capable of intercepting and killing multiple targets. The placement of the acquisition and discrimination sensor and control sensor on the CV to provide target acquisition and discrimination and mid-course guidance for all the KVs avoids the weight and complexity issues associated with trying to “miniaturize” unitary interceptors. The placement of either a short-band imaging sensor and headlamp or a MWIR sensor on each KV overcomes the latency, resolution and bandwidth problems associated with command guidance systems and allows each KV to precisely select a desirable aimpoint and maintain track on that aimpoint to impact.
    Type: Application
    Filed: February 1, 2006
    Publication date: January 5, 2012
    Inventors: R. Glenn Brosch, Darin S. Williams, Kent Pflibsen, Thomas Crawford
  • Patent number: 8084724
    Abstract: By sharing tasks between the CV and the KVs, the MKV interceptor provides a cost-effective missile defense system capable of intercepting and killing multiple targets. The placement of the acquisition and discrimination sensor and control sensor on the CV to provide target acquisition and discrimination and mid-course guidance for all the KVs avoids the weight and complexity issues associated with trying to “miniaturize” unitary interceptors. The placement of either a short-band imaging sensor and headlamp or a MWIR sensor on each KV overcomes the latency, resolution and bandwidth problems associated with command guidance systems and allows each KV to precisely select a desirable aimpoint and maintain track on that aimpoint to impact. An implicit divert and attitude control system (DACS) using tow or more divert thrusters performs KV divert and attitude maneuvers to respond to the command guidance pre-handover and to maintain track on the aimpoint to terminal intercept post-handover.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: December 27, 2011
    Assignee: Raytheon Company
    Inventors: R. Glenn Brosch, Darin S. Williams, Kent P. Pflibsen, Thomas M. Crawford
  • Patent number: 7314561
    Abstract: An integrated system and method for removing excess nutrients from water, for removing the nutrients from the removal site, for enhancing soil, and for producing pulp and paper products includes bioremediating water to be treated with cultured algae or another suitable plant matter in an attached periphyton bed, harvesting the algae/plant matter to produce a wet algal biomass, and mixing the wet biomass with a shredded fibrous material to produce a pulp. The pulp can be molded into a biodegradable package that can be utilized as a delivery vehicle to a site having nutrient-enrichable soil, where the package can be used as a soil amendment after being used as a delivery vehicle. The pulp can also be made into a paper product that is biodegradable and has the characteristic of enhancing soil quality.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: January 1, 2008
    Assignee: Science Applications International Corporation
    Inventors: Kyle R. Jensen, R. Glenn Brosch, Roxanne M. Jensen
  • Patent number: 7288196
    Abstract: An integrated system and method for removing excess nutrients from water, for removing the nutrients from the removal site, for enhancing soil, and for producing pulp and paper products includes bioremediating water to be treated with cultured algae or another suitable plant matter in an attached periphyton bed, harvesting the algae/plant matter to produce a wet algal biomass, and mixing the wet biomass with a shredded fibrous material to produce a pulp. The pulp can be molded into a biodegradable package that can be utilized as a delivery vehicle to a site having nutrient-enrichable soil, where the package can be used as a soil amendment after being used as a delivery vehicle. The pulp can also be made into a paper product that is biodegradable and has the characteristic of enhancing soil quality.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: October 30, 2007
    Assignee: Science Applications International Corporation
    Inventors: Kyle R. Jensen, R. Glenn Brosch, Roxanne M. Jensen
  • Patent number: 7267773
    Abstract: An integrated system and method for removing excess nutrients from water, for removing the nutrients from the removal site, for enhancing soil, and for producing pulp and paper products includes bioremediating water to be treated with cultured algae or another suitable plant matter in an attached periphyton bed, harvesting the algae/plant matter to produce a wet algal biomass, and mixing the wet biomass with a shredded fibrous material to produce a pulp. The pulp can be molded into a biodegradable package that can be utilized as a delivery vehicle to a site having nutrient-enrichable soil, where the package can be used as a soil amendment after being used as a delivery vehicle. The pulp can also be made into a paper product that is biodegradable and has the characteristic of enhancing soil quality.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: September 11, 2007
    Assignee: Science Applications International Corporation
    Inventors: Kyle R. Jensen, R. Glenn Brosch, Roxanne M. Jensen
  • Publication number: 20030217826
    Abstract: An integrated system and method for removing excess nutrients from water, for removing the nutrients from the removal site, for enhancing soil, and for producing pulp and paper products includes bioremediating water to be treated with cultured algae or another suitable plant matter in an attached periphyton bed, harvesting the algae/plant matter to produce a wet algal biomass, and mixing the wet biomass with a shredded fibrous material to produce a pulp. The pulp can be molded into a biodegradable package that can be utilized as a delivery vehicle to a site having nutrient-enrichable soil, where the package can be used as a soil amendment after being used as a delivery vehicle. The pulp can also be made into a paper product that is biodegradable and has the characteristic of enhancing soil quality.
    Type: Application
    Filed: March 20, 2003
    Publication date: November 27, 2003
    Inventors: Kyle R. Jensen, R. Glenn Brosch, Roxanne M. Jensen
  • Patent number: 6554960
    Abstract: An integrated system and method for removing excess nutrients from water, for removing the nutrients from the removal site, for enhancing soil, and for producing pulp and paper products includes bioremediating water to be treated with cultured algae or another suitable plant matter in an attached periphyton bed, harvesting the algae/plant matter to produce a wet algal biomass, and mixing the wet biomass with a shredded fibrous material to produce a pulp. The pulp can be molded into a biodegradable package that can be utilized as a delivery vehicle to a site having nutrient-enrichable soil, where the package can be used as a soil amendment after being used as a delivery vehicle. The pulp can also be made into a paper product that is biodegradable and has the characteristic of enhancing soil quality.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: April 29, 2003
    Assignee: Science Applications International Corporation
    Inventors: Kyle R. Jensen, R. Glenn Brosch, Roxanne M. Jensen
  • Patent number: 6551463
    Abstract: An integrated system and method for removing excess nutrients from water, for removing the nutrients from the removal site, for enhancing soil, and for producing pulp and paper products includes bioremediating water to be treated with cultured algae or another suitable plant matter in an attached periphyton bed, harvesting the algae/plant matter to produce a wet algal biomass, and mixing the wet biomass with a shredded fibrous material to produce a pulp. The pulp can be molded into a biodegradable package that can be utilized as a delivery vehicle to a site having nutrient-enrichable soil, where the package can be used as a soil amendment after being used as a delivery vehicle. The pulp can also be made into a paper product that is biodegradable and has the characteristic of enhancing soil quality.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: April 22, 2003
    Assignee: Science Applications International Corporation
    Inventors: Kyle R. Jensen, R. Glenn Brosch, Roxanne M. Jensen
  • Publication number: 20020190155
    Abstract: A projectile having a plurality of micro electromechanical (MEMS) devices disposed about the axis of flight for active control of the trajectory of the projectile. The MEMS devices each form an integral control surface/actuator. Control circuitry installed within the projectile housing includes both rotation and lateral acceleration sensors. Flap portions of the MEMS devices are extended into the air stream flowing over the projectile in response to the rate of rotation of the projectile, thereby forming a standing wave of flaps operable to impart a lateral force on the projectile. MEMS devices utilizing an electrostatically controllable rolling flap portion provide a large range of motion while consuming a small amount of power. The MEMS devices may be arranged in longitudinal strips along an ogive portion of the projectile. Packaging concepts for projectiles as small as a 30 caliber bullet are described.
    Type: Application
    Filed: December 8, 2000
    Publication date: December 19, 2002
    Inventors: Jay Lipeles, R. Glenn Brosch
  • Patent number: 6474593
    Abstract: A projectile having a plurality of micro electromechanical (MEMS) devices disposed about the axis of flight for active control of the trajectory of the projectile. The MEMS devices each form an integral control surface/actuator. Control circuitry installed within the projectile housing includes both rotation and lateral acceleration sensors. Flap portions of the MEMS devices are extended into the air stream flowing over the projectile in response to the rate of rotation of the projectile, thereby forming a standing wave of flaps operable to impart a lateral force on the projectile. MEMS devices utilizing an electrostatically controllable rolling flap portion provide a large range of motion while consuming a small amount of power. The MEMS devices may be arranged in longitudinal strips along an ogive portion of the projectile. Packaging concepts for projectiles as small as a 30 caliber bullet are described.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: November 5, 2002
    Inventors: Jay Lipeles, R. Glenn Brosch
  • Patent number: 6350350
    Abstract: An integrated system and method for removing excess nutrients from water, for removing the nutrients from the removal site, for enhancing soil, and for producing pulp and paper products includes bioremediating water to be treated with cultured algae or another suitable plant matter in an attached periphyton bed, harvesting the algae/plant matter to produce a wet algal biomass, and mixing the wet biomass with a shredded fibrous material to produce a pulp. The pulp can be molded into a biodegradable package that can be utilized as a delivery vehicle to a site having nutrient-enrichable soil, where the package can be used as a soil amendment after being used as a delivery vehicle. The pulp can also be made into a paper product that is biodegradable and has the characteristic of enhancing soil quality.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: February 26, 2002
    Assignee: Science Applications International Corp.
    Inventors: Kyle R. Jensen, R. Glenn Brosch, Roxanne M. Jensen
  • Patent number: 5985147
    Abstract: An integrated system and method for removing excess nutrients from water, for removing the nutrients from the removal site, and for enhancing soil includes bioremediating water to be treated with cultured algae or another suitable plant matter in an attached periphyton bed, harvesting the algae/plant matter to produce a wet algal biomass, and mixing the wet biomass with a shredded fibrous material to produce a pulp. The pulp can be molded into a biodegradable package that can be utilized as a delivery vehicle to a site having nutrient-enrichable soil, where the package can be used as a soil amendment after being used as a delivery vehicle.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: November 16, 1999
    Assignee: Science Applications International Corporation
    Inventors: Kyle R. Jensen, R. Glenn Brosch, Roxanne M. Jensen