Patents by Inventor R. Joseph Weiblen

R. Joseph Weiblen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230373003
    Abstract: A new seedless synthesis of anisotropic nanoscale gold nanoflower (AuNF) particles uses bidentate thiolate ligands to protect the nanoparticle surface and a combination of reagents (for example, ligand, ascorbic acid, and hydroxide) to synthesis AuNF with controlled size and anisotropic properties. Compared to prior art gold nanospheres, AuNF produced approximately a 15-fold improvement in a drug delivery assay.
    Type: Application
    Filed: May 15, 2023
    Publication date: November 23, 2023
    Inventors: Eunkeu Oh, Kimihiro Susumu, Ajmeeta Sangtani, Katherine Rogers, Okhil K. Nag, Kwahun Lee, Igor Vurgaftman, R. Joseph Weiblen, Mijin Kim, James B. Delehanty
  • Patent number: 11761892
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: September 19, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Patent number: 11719634
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: August 8, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Patent number: 11719633
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: August 8, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chui Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Patent number: 11709135
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: July 25, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Naw
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chui Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Patent number: 11703453
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: July 18, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Patent number: 11698341
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: July 11, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Patent number: 11680901
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: June 20, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Patent number: 11662310
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: May 30, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Patent number: 11619583
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: April 4, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Patent number: 11573178
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: February 7, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Publication number: 20210404957
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 30, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. MEYER, Igor VURGAFTMAN, Chadwick Lawrence CANEDY, William W. BEWLEY, Chul Soo KIM, Charles D. MERRITT, Michael V. WARREN, R. Joseph WEIBLEN, Mijin KIM
  • Publication number: 20210396664
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 23, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Publication number: 20210396670
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 23, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Publication number: 20210396666
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 23, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Publication number: 20210396668
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 23, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Publication number: 20210396669
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 23, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Publication number: 20210396667
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 23, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Publication number: 20210396665
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 23, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Publication number: 20210389241
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 16, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim