Patents by Inventor R. Kenneth Marcus

R. Kenneth Marcus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230191283
    Abstract: A relatively fast, inexpensive, and non-destructive method for separation and isolation of biologically active nanoparticles is described. Methods include the use of solid phase separation medis such as channeled fibers in a hydrophobic interaction chromatography (HIC) protocol to isolate biologically active nanoparticles from other components of a mixture. Biologically active nanoparticles can include natural nanoparticles (e.g., exosomes, lysosomes, virus particles) as well as synthetic nanoparticles (liposomes, genetically modified virus particles, etc.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Inventors: R. KENNETH MARCUS, TERRI F. BRUCE, LEI WANG, SISI HUANG, TYLER Y. SLONECKI, RHONDA REIGERS POWELL
  • Patent number: 11596876
    Abstract: A relatively fast, inexpensive, and non-destructive method for separation and isolation of biologically active nanoparticles is described. Methods include the use of solid phase separation medis such as channeled fibers in a hydrophobic interaction chromatography (HIC) protocol to isolate biologically active nanoparticles from other components of a mixture. Biologically active nanoparticles can include natural nanoparticles (e.g., exosomes, lysosomes, virus particles) as well as synthetic nanoparticles (liposomes, genetically modified virus particles, etc.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: March 7, 2023
    Assignee: Clemson University Research Foundation
    Inventors: R. Kenneth Marcus, Terri F. Bruce, Lei Wang, Sisi Huang, Tyler Y. Slonecki, Rhonda Reigers Powell
  • Patent number: 11366066
    Abstract: Apparatus include an atmospheric pressure glow discharge (APGD) analyte electrode defining an analyte discharge axis into an APGD volume, and a plurality of APGD counter electrodes having respective electrical discharge ends directed to the APGD volume, wherein the APGD analyte electrode and the APGD counter electrodes are configured to produce an APGD plasma in the APGD volume with a voltage difference between the APGD analyte electrode and one or more of the AGPD counter electrodes. An electrode can be integrated into an ion inlet. Apparatus can be configured to perform auto-ignition and/or provide multi-modal operation through selectively powering electrodes. Electrode holder devices are disclosed. Related methods are disclosed.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: June 21, 2022
    Assignees: Battelle Memorial Institute, Clemson University Research Foundation, GAA Custom Engineering LLC
    Inventors: David W. Koppenaal, Ying Zhu, Edward D. Hoegg, R. Kenneth Marcus, Gordon A. Anderson, Chris Anderson, Tyler Williams
  • Publication number: 20210109026
    Abstract: Apparatus include an atmospheric pressure glow discharge (APGD) analyte electrode defining an analyte discharge axis into an APGD volume, and a plurality of APGD counter electrodes having respective electrical discharge ends directed to the APGD volume, wherein the APGD analyte electrode and the APGD counter electrodes are configured to produce an APGD plasma in the APGD volume with a voltage difference between the APGD analyte electrode and one or more of the AGPD counter electrodes. An electrode can be integrated into an ion inlet. Apparatus can be configured to perform auto-ignition and/or provide multi-modal operation through selectively powering electrodes. Electrode holder devices are disclosed. Related methods are disclosed.
    Type: Application
    Filed: October 11, 2019
    Publication date: April 15, 2021
    Inventors: David W. Koppenaal, Ying Zhu, Edward D. Hoegg, R. Kenneth Marcus, Gordon A. Anderson, Chris Anderson, Tyler Williams
  • Publication number: 20190240594
    Abstract: A relatively fast, inexpensive, and non-destructive method for separation and isolation of biologically active nanoparticles is described. Methods include the use of solid phase separation medis such as channeled fibers in a hydrophobic interaction chromatography (HIC) protocol to isolate biologically active nanoparticles from other components of a mixture. Biologically active nanoparticles can include natural nanoparticles (e.g., exosomes, lysosomes, virus particles) as well as synthetic nanoparticles (liposomes, genetically modified virus particles, etc.
    Type: Application
    Filed: February 5, 2019
    Publication date: August 8, 2019
    Inventors: R. KENNETH MARCUS, TERRI F. BRUCE, LEI WANG, SISI HUANG, TYLER Y. SLONECKI, RHONDA REIGERS POWELL
  • Publication number: 20190201812
    Abstract: Chromatography devices and methods for forming and using the devices are described. The devices include a polyimide-based support phase and a polymer grafted to a surface of the polyimide-based support phase. A microwave-assisted graft polymerization protocol is described to form the polymer at the surface of the support phase. Devices can be utilized in high-efficiency separation of macromolecules such as proteins.
    Type: Application
    Filed: June 20, 2017
    Publication date: July 4, 2019
    Inventors: R. Kenneth MARCUS, LIUWEI JIANG
  • Patent number: 10269525
    Abstract: A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: April 23, 2019
    Assignees: Clemson University Research Foundation, Battelle Memorial Institute on behalf of Pacific Northwest National Laboratory, The Regents of the University of California—Lawrence Berkeley National Laboratory
    Inventors: R. Kenneth Marcus, Charles Derrick Quarles, Jr., Richard E. Russo, David W. Koppenaal, Charles J. Barinaga, Anthony J. Carado
  • Patent number: 9827552
    Abstract: A solid phase for use in separation has been modified using an aqueous phase adsorption of a headgroup-modified lipid to generate analyte specific surfaces for use as a stationary phase in separations such as high performance liquid chromatography (HPLC) or solid phase extraction (SPE). The aliphatic moiety of the lipid adsorbs strongly to a hydrophobic solid surface, with the hydrophilic and active headgroups orienting themselves toward the more polar mobile phase, thus allowing for interactions with the desired solutes. The surface modification approach is generally applicable to a diversity of selective immobilization applications such as protein immobilization clinical diagnostics and preparative scale HPLC as demonstrated on capillary-channeled fibers, though the general methodology could be implemented on any hydrophobic solid support material.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: November 28, 2017
    Assignee: Clemson University
    Inventors: R. Kenneth Marcus, Kenneth A. Christensen
  • Publication number: 20170162358
    Abstract: A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).
    Type: Application
    Filed: November 23, 2016
    Publication date: June 8, 2017
    Inventors: R. Kenneth Marcus, Charles Derrick Quarles, JR., Richard E. Russo, David W. Koppenaal, Charles J. Barinaga, Anthony J. Carado
  • Patent number: 9536725
    Abstract: A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: January 3, 2017
    Assignees: Clemson University, The Regents of the University of California, Battelle Memorial Institute on behalf of Pacific Northwest National Laboratory
    Inventors: R. Kenneth Marcus, Charles Derrick Quarles, Jr., Richard E. Russo, David W. Koppenaal, Charles J. Barinaga, Anthony J. Carado
  • Publication number: 20160266134
    Abstract: Separation technologies and a support/separation phases for use therein. A surface of a support phase can be modified to include a crosslinked polymer network as stationary phase to perform separation of one or more species from a liquid in highly efficient separations based on chemical interactions, i.e., chromatography. Optionally, the support phase can employ polymer fibers having channels extending axially along their surfaces. The use of the support phase to support the crosslinked stationary phase can be used in one embodiment in the process of performing micro-scale separations.
    Type: Application
    Filed: March 11, 2016
    Publication date: September 15, 2016
    Inventors: R. Kenneth Marcus, Liuwei Jiang
  • Publication number: 20150024511
    Abstract: A solid phase for use in separation has been modified using an aqueous phase adsorption of a headgroup-modified lipid to generate analyte specific surfaces for use as a stationary phase in separations such as high performance liquid chromatography (HPLC) or solid phase extraction (SPE). The aliphatic moiety of the lipid adsorbs strongly to a hydrophobic solid surface, with the hydrophilic and active headgroups orienting themselves toward the more polar mobile phase, thus allowing for interactions with the desired solutes. The surface modification approach is generally applicable to a diversity of selective immobilization applications such as protein immobilization clinical diagnostics and preparative scale HPLC as demonstrated on capillary-channeled fibers, though the general methodology could be implemented on any hydrophobic solid support material.
    Type: Application
    Filed: July 17, 2014
    Publication date: January 22, 2015
    Inventors: R. Kenneth Marcus, Kenneth A. Christensen
  • Publication number: 20140218729
    Abstract: A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).
    Type: Application
    Filed: February 4, 2014
    Publication date: August 7, 2014
    Applicants: Clemson University, Pacific Northwest National Laboratory, Lawrence Berkeley National Laboratory
    Inventors: R. Kenneth Marcus, Charles Derrick Quarles, JR., Richard E. Russo, David W. Koppenaal, Charles J. Barinaga, Anthony J. Carado
  • Publication number: 20110003144
    Abstract: A method of preparing a fiber or an article suitable for use in defending against a biological or a chemical contaminant, and the fiber or article resulting from the method thereof, is disclosed. The method includes obtaining a fiber such as a capillary-channeled fiber with a surface having grooves or channels thereon and modifying the surface of the fiber with an active agent so as to provide the fiber with the ability to defend against a biological or a chemical contaminant.
    Type: Application
    Filed: November 13, 2007
    Publication date: January 6, 2011
    Inventors: Philip John Brown, R. Kenneth Marcus, Christine W. Cole, Igor A. Luzinov
  • Patent number: 7740763
    Abstract: Solid phase extraction devices including a plurality of packed nominally aligned capillary-channeled polymeric fibers for use as stationary phase materials are disclosed. A plurality of fibers are packed together in a casing so as to provide good flow characteristics through the fibers and high surface area contact between a sample and the fibers. Different polymer compositions of the fibers permit the “chemical tuning” of the extraction process. The fibers can be physically or chemically derivatized to target specific analytes for separation from a test sample. Use of the fibers allows a wide range of liquid flow rates with very low backpressures. The fibers are easily packed into a micropipette tip or a conduit for use with a fluid flow device such as an aspirator or a pump. The devices can be used for isolation and pre-concentration of analytes from samples, for instance for proteins from buffer solutions or extraction of pollutants from remote locations.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: June 22, 2010
    Inventors: R. Kenneth Marcus, Philip J. Brown, Igor A. Luzinov, Yonnie S. Wu
  • Publication number: 20080213823
    Abstract: The present invention relates to methods for counting, sorting, and manipulation of cells, organelles, and/or cellular material using capillary-channeled polymer films.
    Type: Application
    Filed: February 25, 2008
    Publication date: September 4, 2008
    Inventors: Kenneth A. Christensen, R. Kenneth Marcus
  • Patent number: 7374673
    Abstract: Polymer fibers having a novel cross-sectional geometry are used as stationary phase materials for liquid chromatography separations. Fibers of 20 to 50 micrometer diameters have surface-channel structures extending their entire lengths. Bundles of fibers having this novel cross-sectional geometry are packed in columns. Different polymer compositions permit the “chemical tuning” of the separation process. Channeled fibers composed of polystyrene and polypropylene have been used to separate mixtures of polyaromatic hydrocarbons (PAHs), Pb-containing compounds and fatty acids. Use of channeled fibers allows a wide range of liquid flow rates with very low backing pressures.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: May 20, 2008
    Assignee: Clemson University
    Inventor: R. Kenneth Marcus
  • Publication number: 20070071649
    Abstract: Surface-channeled fibers, either single fibers or a plurality of fibers, and surface-channeled films are useful in a variety of on-column detection systems, both those requiring detection by a spectroscopic detector and those for which a chemically selective indicator provides a visually distinguishable response.
    Type: Application
    Filed: October 12, 2006
    Publication date: March 29, 2007
    Inventor: R. Kenneth Marcus
  • Patent number: 6852969
    Abstract: A glow discharge spectroscopy (GDS) source operates at atmospheric pressure. One of the discharge electrodes of the device is formed by an electrolytic solution 27 containing the analyte specimen. The passage of electrical current (either electrons or positive ions) across the solution/gas phase interface causes local heating and the volatilization of the analyte species. Collisions in the discharge region immediately above the surface of the solution results in optical emission and ionization that are characteristic of the analyte elements. As such, these analyte elements can be identified and quantified by optical emission spectroscopy (OES) or mass spectrometry (MS). The device uses the analyte solution as either the cathode or anode. Operating parameters depend on the electrolyte concentration (i.e. solution conductivity) and the gap 35 between the solution surface and the counter electrode.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: February 8, 2005
    Assignee: Clemson University
    Inventors: R. Kenneth Marcus, W. Clay Davis
  • Patent number: 6750449
    Abstract: The apparatus and methods employ momentum separation to implement a particle beam (PB) sampling scheme for the introduction of particulate matter into low pressure (e.g., glow discharge) plasma sources for subsequent atomic emission and mass spectrometry chemical analysis in real time, whether the particles are provided in a continuous stream during the analysis or are collected in situ and analyzed periodically upon obtaining a suitable number of particles to be analyzed. The particulate matter in the particle beam (PB) is subjected to low-power laser scattering to effect particle size analysis. Gases removed by momentum separation are also analyzed.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: June 15, 2004
    Assignee: Clemson University
    Inventor: R. Kenneth Marcus