Patents by Inventor R. Samuel Boorse

R. Samuel Boorse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091751
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stability at high-reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica-to-alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 21, 2024
    Applicant: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 11845067
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: December 19, 2023
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Publication number: 20230081351
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: November 15, 2022
    Publication date: March 16, 2023
    Inventors: Ivor BULL, Wen-Mei XUE, Patrick BURK, R. Samuel BOORSE, William M. JAGLOWSKI, Gerald Stephen KOERMER, Ahmad MOINI, Joseph A. PATCHETT, Joseph C. DETTLING, Matthew Tyler CAUDLE
  • Publication number: 20220401914
    Abstract: A binderless zeolite adsorbent for separation of oxygen from a gaseous stream. The adsorbent is a blend of a lithium exchanged zeolite 13X, a lithium exchanged low silica zeolite X zeolite, and halloysite clay. Also disclosed is a process of making the binderless zeolite adsorbent. Further disclosed is a process for production of oxygen from a gaseous stream utilizing the binderless zeolite adsorbent.
    Type: Application
    Filed: June 20, 2022
    Publication date: December 22, 2022
    Inventors: Patrick Purcell, Kerry C. Weston, R. Samuel Boorse
  • Patent number: 11529619
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 20, 2022
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Publication number: 20200261895
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: April 22, 2020
    Publication date: August 20, 2020
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 10654031
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: May 19, 2020
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 10124292
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: November 13, 2018
    Assignee: BASF CORPORATION
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Susanne Stiebels, Claudia Zabel, Torsten Neubauer, R. Samuel Boorse
  • Patent number: 9963349
    Abstract: Methods for introducing mesoporosity into zeolitic materials are described herein that employ an acid treatment, an optional surfactant treatment, and a base treatment without filtration or purification steps between the steps. In particular, the process generally involves subjecting a zeolitic material to an acid treatment followed by a surfactant treatment and base treatment. The methods can efficiently introduce mesoporosity into various zeolitic materials, such as zeolites.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: May 8, 2018
    Assignee: Rive Technology, Inc.
    Inventors: R. Samuel Boorse, Kunhao Li
  • Publication number: 20180056281
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: November 7, 2017
    Publication date: March 1, 2018
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 9839905
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: December 12, 2017
    Assignee: BASF CORPORATION
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Publication number: 20170241313
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Application
    Filed: May 9, 2017
    Publication date: August 24, 2017
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Susanne Stiebels, Claudia Zabel, Torsten Neubauer, R. Samuel Boorse
  • Patent number: 9662611
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: May 30, 2017
    Assignee: BASF Corporation
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Suzanne Stiebels, Claudia Wendt, Torsten Neubauer, R. Samuel Boorse
  • Patent number: 9657625
    Abstract: Provided are selective catalytic reduction catalytic articles, emission treatment systems and methods for simultaneously remediating the nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The catalytic articles have a Selective Catalytic Reduction (SCR) catalyst uniformly coated over the outlet portion of wall flow filter walls resulting in reduction of NO2 and combustion of the soot without substantially increasing the system backpressure.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: May 23, 2017
    Assignee: BASF Corporation
    Inventors: R. Samuel Boorse, Martin Dieterle
  • Patent number: 9656254
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: May 23, 2017
    Assignee: BASF CORPORATION
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 9475002
    Abstract: Catalytic articles, methods and emissions treatment systems for treating an engine exhaust gas stream containing NOx and particulate matter are disclosed and include a particulate filter comprising a first SCR catalyst for NOx conversion disposed downstream of the injector. The particulate filter is a partial filter with a particle filtration efficiency between about 30% and 60% and an SCR catalyst loading in the range of 0.1 g/in3-3.5 g/in3.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: October 25, 2016
    Assignee: BASF Corporation
    Inventors: R. Samuel Boorse, Kenneth E. Voss, Martin Dieterle
  • Publication number: 20160167973
    Abstract: Methods for introducing mesoporosity into zeolitic materials are described herein that employ an acid treatment, an optional surfactant treatment, and a base treatment without filtration or purification steps between the steps. In particular, the process generally involves subjecting a zeolitic material to an acid treatment followed by a surfactant treatment and base treatment. The methods can efficiently introduce mesoporosity into various zeolitic materials, such as zeolites.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 16, 2016
    Inventors: R. Samuel Boorse, Kunhao Li
  • Patent number: 9358503
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: June 7, 2016
    Assignee: BASF Corporation
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Susanne Stiebels, Claudia Wendt, Torsten Neubauer, R. Samuel Boorse
  • Patent number: 9321009
    Abstract: Provided are emissions treatment systems for an exhaust stream having an ammonia-generating component, such as a NOx storage reduction (NSR) catalyst or a lean NOx trap (LNT) catalyst, and an SCR catalyst disposed downstream of the ammonia-generating catalyst. The SCR catalyst can be a molecular sieve having the CHA crystal structure, for example SSZ-13 or SAPO-34, which can be ion-exchanged with copper. The LNT can be layered, having an undercoat washcoat layer comprising a support material, at least one precious metal, and at least one NOx sorbent selected from the group consisting of alkaline earth elements, rare earth elements, and combinations thereof and a top washcoat layer comprising a support material, at least one precious metal, and ceria in particulate form, the top washcoat layer being substantially free of alkaline earth components. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: April 26, 2016
    Assignee: BASF CORPORATION
    Inventors: Chung-Zong Wan, Xiaolai Zheng, Susanne Stiebels, Claudia Wendt, Torsten Neubauer, R. Samuel Boorse
  • Publication number: 20160101412
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle