Patents by Inventor R. Scott Kuersten
R. Scott Kuersten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10829808Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: GrantFiled: March 25, 2019Date of Patent: November 10, 2020Assignee: Applied Biosystems, LLCInventor: R. Scott Kuersten
-
Publication number: 20190211387Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: ApplicationFiled: March 25, 2019Publication date: July 11, 2019Inventor: R. Scott KUERSTEN
-
Patent number: 10240191Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: GrantFiled: November 3, 2017Date of Patent: March 26, 2019Assignee: Applied Biosystems, LLCInventor: R. Scott Kuersten
-
Publication number: 20180051328Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: ApplicationFiled: November 3, 2017Publication date: February 22, 2018Inventor: R. Scott KUERSTEN
-
Patent number: 9834816Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: GrantFiled: March 6, 2017Date of Patent: December 5, 2017Assignee: APPLIED BIOSYSTEMS, LLCInventor: R. Scott Kuersten
-
Publication number: 20170175180Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: ApplicationFiled: March 6, 2017Publication date: June 22, 2017Inventor: R. Scott KUERSTEN
-
Patent number: 9624534Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: GrantFiled: July 13, 2016Date of Patent: April 18, 2017Assignee: APPLIED BIOSYSTEMS, LLCInventor: R. Scott Kuersten
-
Publication number: 20160312277Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: ApplicationFiled: July 13, 2016Publication date: October 27, 2016Inventor: R. Scott KUERSTEN
-
Patent number: 9416406Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: GrantFiled: December 15, 2014Date of Patent: August 16, 2016Assignee: Applied Biosystems, LLCInventor: R. Scott Kuersten
-
Publication number: 20150147759Abstract: Ligation-enhanced nucleic acid detection assay embodiments for detection of RNA or DNA are described. The assay embodiments rely on ligation of chimeric oligonucleotide probes to generate a template for amplification and detection. The assay embodiments are substantially independent of the fidelity of a polymerase for copying compromised nucleic acid. Very little background amplification is observed and as few as 1000 copies of target nucleic acid can be detected. Method embodiments are particularly adept for detection of RNA from compromised samples such as formalin-fixed and paraffin-embedded samples. Heavily degraded and cross-linked nucleic acids of compromised samples, in which classic quantitative real time PCR assays typically fail to adequately amplify signal, can be reliably detected and quantified.Type: ApplicationFiled: November 14, 2014Publication date: May 28, 2015Inventors: R. Scott Kuersten, Brittan Pasloske
-
Publication number: 20150099268Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: ApplicationFiled: December 15, 2014Publication date: April 9, 2015Inventor: R. Scott KUERSTEN
-
Patent number: 8932816Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: GrantFiled: August 6, 2013Date of Patent: January 13, 2015Assignee: Applied Biosystems, LLCInventor: R. Scott Kuersten
-
Patent number: 8889355Abstract: Ligation-enhanced nucleic acid detection assay embodiments for detection of RNA or DNA are described. The assay embodiments rely on ligation of chimeric oligonucleotide probes to generate a template for amplification and detection. The assay embodiments are substantially independent of the fidelity of a polymerase for copying compromised nucleic acid. Very little background amplification is observed and as few as 1000 copies of target nucleic acid can be detected. Method embodiments are particularly adept for detection of RNA from compromised samples such as formalin-fixed and paraffin-embedded samples. Heavily degraded and cross-linked nucleic acids of compromised samples, in which classic quantitative real time PCR assays typically fail to adequately amplify signal, can be reliably detected and quantified.Type: GrantFiled: April 26, 2013Date of Patent: November 18, 2014Assignee: Applied Biosystems, LLCInventors: R. Scott Kuersten, Brittan Pasloske
-
Publication number: 20130338022Abstract: Ligation-enhanced nucleic acid detection assay embodiments for detection of RNA or DNA are described. The assay embodiments rely on ligation of chimeric oligonucleotide probes to generate a template for amplification and detection. The assay embodiments are substantially independent of the fidelity of a polymerase for copying compromised nucleic acid. Very little background amplification is observed and as few as 1000 copies of target nucleic acid can be detected. Method embodiments are particularly adept for detection of RNA from compromised samples such as formalin-fixed and paraffin-embedded samples. Heavily degraded and cross-linked nucleic acids of compromised samples, in which classic quantitative real time PCR assays typically fail to adequately amplify signal, can be reliably detected and quantified.Type: ApplicationFiled: April 26, 2013Publication date: December 19, 2013Applicant: APPLIED BIOSYSTEMS, LLCInventors: R. Scott Kuersten, Brittan Pasloske
-
Publication number: 20130331275Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: ApplicationFiled: August 6, 2013Publication date: December 12, 2013Applicant: APPLIED BIOSYSTEM, LLCInventor: R. Scott KUERSTEN
-
Publication number: 20120295794Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: ApplicationFiled: May 3, 2012Publication date: November 22, 2012Applicant: LIFE TECHNOLOGIES CORPORATIONInventor: R. Scott KUERSTEN
-
Patent number: 8192941Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: GrantFiled: July 14, 2010Date of Patent: June 5, 2012Assignee: Applied Biosystems, LLCInventor: R. Scott Kuersten
-
Publication number: 20120065105Abstract: Ligation-enhanced nucleic acid detection assay embodiments for detection of RNA or DNA are described. The assay embodiments rely on ligation of chimeric oligonucleotide probes to generate a template for amplification and detection. The assay embodiments are substantially independent of the fidelity of a polymerase for copying compromised nucleic acid. Very little background amplification is observed and as few as 1000 copies of target nucleic acid can be detected. Method embodiments are particularly adept for detection of RNA from compromised samples such as formalin-fixed and paraffin-embedded samples. Heavily degraded and cross-linked nucleic acids of compromised samples, in which classic quantitative real time PCR assays typically fail to adequately amplify signal, can be reliably detected and quantified.Type: ApplicationFiled: July 26, 2011Publication date: March 15, 2012Applicant: LIFE TECHNOLOGIES CORPORATIONInventors: R. Scott Kuersten, Brittan L. Pasloske
-
Patent number: 8008010Abstract: Ligation-enhanced nucleic acid detection assay embodiments for detection of RNA or DNA are described. The assay embodiments rely on ligation of chimeric oligonucleotide probes to generate a template for amplification and detection. The assay embodiments are substantially independent of the fidelity of a polymerase for copying compromised nucleic acid. Very little background amplification is observed and as few as 1000 copies of target nucleic acid can be detected. Method embodiments are particularly adept for detection of RNA from compromised samples such as formalin-fixed and paraffin-embedded samples. Heavily degraded and cross-linked nucleic acids of compromised samples, in which classic quantitative real time PCR assays typically fail to adequately amplify signal, can be reliably detected and quantified.Type: GrantFiled: June 27, 2008Date of Patent: August 30, 2011Assignee: Applied Biosystems, LLCInventors: R. Scott Kuersten, Brittan L. Pasloske
-
Publication number: 20100279305Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.Type: ApplicationFiled: July 14, 2010Publication date: November 4, 2010Applicant: APPLIED BIOSYSTEMS, LLCInventor: R. Scott KUERSTEN