Patents by Inventor Rabi S. Bhattacharya

Rabi S. Bhattacharya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11667999
    Abstract: A method for producing a case-hardened martensitic stainless steel article includes: providing an article comprised, at least in part, of a martensitic stainless steel, carburizing the article within a temperature range of 1625° F.-1680° F. (885° C.-916° C.), and then carbo-nitriding the article within a temperature range of 1575° F.-1625° F. (857° C.-885° C.). An article, such as a bearing ring, comprising such a case-hardened martensitic stainless steel is also disclosed.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: June 6, 2023
    Assignees: UES INC., MIDWEST THERMAL-VAC INC., AKTIEBOLAGET SKF
    Inventors: Hitesh K. Trivedi, Frederick J. Otto, Timothy W. Piazza, Bryan A. McCoy, Rabi S. Bhattacharya
  • Publication number: 20220246947
    Abstract: A High Entropy Alloy (HEA) anode for a Solid Oxide Fuel Cell (SOFC), in which the HEA anode comprises: approximately ten (˜10) atomic percent (%) to ˜35% Copper (Cu) (preferably ˜23% to ˜27% Cu, and more preferably ˜24% to ˜26% Cu); ˜10% to ˜35% Iron (Fe) (preferably ˜23% to ˜27% Fe, and more preferably ˜24% to ˜26% Fe); ˜10% to ˜35% Cobalt (Co) (preferably ˜23% to ˜27% Co, and more preferably ˜24% to ˜26% Co); ˜5% to ˜25% Nickel (Ni) (preferably ˜13% to ˜17% Ni, and more preferably ˜14% to ˜16% Ni); ˜5% to ˜20% Manganese (Mn) (preferably ˜8% to 13% Mn, and more preferably ˜9% to 11% Mn); and less than a total of ˜2% other elements as impurities (preferably less than ˜1% total of other elements or impurities, and more preferably less than ˜0.5% total of other elements or impurities), with the sum of all of the alloying elements (Cu, Fe, Co, Ni, Mn, and impurities or other elements) totaling 100%.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 4, 2022
    Inventors: Rabi S. Bhattacharya, Oleg N. Senkov, Prabhakar Singh
  • Publication number: 20180320262
    Abstract: A method for producing a case-hardened martensitic stainless steel article includes: providing an article comprised, at least in part, of a martensitic stainless steel, carburizing the article within a temperature range of 1625° F.-1680° F. (885° C.-916° C.), and then carbo-nitriding the article within a temperature range of 1575° F.-1625° F. (857° C.-885° C.). An article, such as a bearing ring, comprising such a case-hardened martensitic stainless steel is also disclosed.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 8, 2018
    Inventors: Hitesh K. Trivedi, Frederick J. Otto, Timothy W. Piazza, Bryan A. McCoy, Rabi S. Bhattacharya
  • Patent number: 10053763
    Abstract: A method for producing a case-hardened martensitic stainless steel article includes: providing an article comprised, at least in part, of a martensitic stainless steel, carburizing the article within a temperature range of 1625° F.-1680° F. (885° C.-916° C.), and then carbo-nitriding the article within a temperature range of 1575° F.-1625° F. (857° C.-885° C.). An article, such as a bearing ring, comprising such a case-hardened martensitic stainless steel is also disclosed.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: August 21, 2018
    Assignees: AKTIEBOLAGET SKF, MIDWEST THERMAL-VAC.INC., UES INC.
    Inventors: Hitesh K. Trivedi, Frederick J. Otto, Timothy W. Piazza, Bryan A. McCoy, Rabi S. Bhattacharya
  • Publication number: 20140305548
    Abstract: A method for producing a case-hardened martensitic stainless steel article includes: providing an article comprised, at least in part, of a martensitic stainless steel, carburizing the article within a temperature range of 1625° F.-1680° F. (885° C.-916° C.), and then carbo-nitriding the article within a temperature range of 1575° F.-1625° F. (857° C.-885° C.). An article, such as a bearing ring, comprising such a case-hardened martensitic stainless steel is also disclosed.
    Type: Application
    Filed: May 31, 2012
    Publication date: October 16, 2014
    Applicants: AKTIEBOLAGET SKF, MIDWEST THERMAL-VAC INC., UES INC.
    Inventors: Hitesh K. Trivedi, Frederick J. Otto, Timothy W. Piazza, Bryan A. McCoy, Rabi S. Bhattacharya
  • Publication number: 20140264684
    Abstract: A photoconductive semiconductor switch comprising a photoconductive GaAs substrate having a pair of spaced metal contacts on a surface thereof, the spaced metal contacts opposite ends of a switching gap, the switching gap having a plurality of lateral current flow preventing channels therein, the channels being formed by ion implantation of the GaAs substrate in the channels.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: UES, INC.
    Inventors: Rabi S. Bhattacharya, Howard Blane Evans, JR.
  • Patent number: 7972938
    Abstract: Methods of producing CdZnTe (CZT) layers for the epitaxial growth of HgCdTe thereon include implanting ions into a CZT substrate at a low temperature to form a damaged layer underneath a CZT surface layer, bonding a wafer to the CZT substrate about the CZT surface layer using a bonding material, and, annealing the CZT substrate for a time sufficient to facilitate the splitting of the CZT substrate at the damaged layer from the CZT surface layer.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: July 5, 2011
    Assignee: UES, Inc.
    Inventors: Rabi S. Bhattacharya, Yongli Xu
  • Patent number: 7846506
    Abstract: The present invention provides a method for applying a tribological coating to a carbon composite substrate. The method includes providing the carbon composite substrate, depositing a layer of carbon on the substrate, applying a layer of aluminum on the layer of carbon, annealing the substrate at a temperature greater than a melting temperature of aluminum, and applying a layer of silver. A layer of mixed aluminum and silver may be substituted for the layer of silver.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: December 7, 2010
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Rabi S. Bhattacharya, Nelson H. Forster, Hitesh Trivedi, Lewis Rosado, Amarendra K. Rai
  • Publication number: 20090305459
    Abstract: Methods of producing CdZnTe (CZT) layers for the epitaxial growth of HgCdTe thereon include implanting ions into a CZT substrate at a low temperature to form a damaged layer underneath a CZT surface layer, bonding a wafer to the CZT substrate about the CZT surface layer using a bonding material, and, annealing the CZT substrate for a time sufficient to facilitate the splitting of the CZT substrate at the damaged layer from the CZT surface layer.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 10, 2009
    Applicant: UES, INC.
    Inventors: Rabi S. Bhattacharya, Yongli Xu
  • Publication number: 20080220256
    Abstract: Embodiments of a method of preparing a coated C/C composite structure comprises the steps of: providing a C/C composite structure; applying a silicon based composition over the C/C composite structure by physical vapor deposition; forming a first layer comprising silicon carbide over the C/C composite by annealing the silicon based composition and the C/C composite at an annealing temperature; and applying a second layer comprising boron over the first layer by physical vapor deposition.
    Type: Application
    Filed: March 9, 2007
    Publication date: September 11, 2008
    Applicant: UES, INC.
    Inventors: Rabi S. Bhattacharya, Peng He, Yongli Xu
  • Patent number: 7033682
    Abstract: Advanced machine tool coatings for Ti machining are presented. The coatings of the present invention provide for protection from chemical reactivity and higher cutting temperatures. In accordance with one embodiment of the present invention, a coated machine tool is provided including a relatively hard underlayer and a chemically inert overlayer. The relatively hard underlayer is formed over the base material of the machine tool. The overlayer is formed over the underlayer, is chemically inert with respect to titanium, and comprises an oxide of yttrium or another metal oxide. In accordance with another embodiment of the present invention, a coated machine tool is provided including an alkaline earth metal fluoride overlayer that is substantially chemically inert with respect to titanium. The overlayer includes a metal intermixed with the metal fluoride. The intermixed metal is softer than the base material.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: April 25, 2006
    Assignee: UES, Inc.
    Inventors: Amarendra K. Rai, Satish J. Dixit, Rabi S. Bhattacharya
  • Patent number: 4863810
    Abstract: A method of providing corrosion resistant substrates having an amorphous metallic alloy coating thereon. The method comprises depositing refractory and transition elements, such as Ni, Nb, Ti and Cr, onto the substrate to provide a crystalline metallic layer thereon which is then irradiated to convert the layer into an amorphous metallic coating on the substrate. The coated substrate displays a corrosion resistance which is at least about four orders of magnitude greater than for the uncoated substrate in both lN HNO.sub.3 and 0.1 N NaCl aqueous solutions.
    Type: Grant
    Filed: September 21, 1987
    Date of Patent: September 5, 1989
    Assignee: Universal Energy Systems, Inc.
    Inventors: Rabi S. Bhattacharya, Amarendra K. Rai, Peter P. Pronko, Charbel Raffoul