Patents by Inventor Rabia Tugce Yazicigil

Rabia Tugce Yazicigil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11870459
    Abstract: Described is a decoder suitable for use with any communication or storage system. The described decoder has a modular decoder hardware architecture capable of implementing a noise guessing process and due to its dependency only on noise, the decoder design is independent of any encoder, thus making it a universal decoder. Hence, the decoder architecture described herein is agnostic to any coding scheme.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: January 9, 2024
    Assignees: Massachusetts Institute of Technology, National University of Ireland Maynooth, Trustees of Boston University
    Inventors: Amit Solomon, Muriel Medard, Kenneth R. Duffy, Rabia Tugce Yazicigil Kirby, Vaibhav Bansal, Wei An
  • Publication number: 20220378363
    Abstract: Transient molecules in the gastrointestinal (GI) tract, such as nitric oxide and hydrogen sulfide, are important signals and mediators of inflammatory bowel disease (IBD). Because these molecules may be short-lived in the body, they are difficult to detect. To track these reactive molecules in the GI tract, a miniaturized device has been developed that integrates genetically engineered probiotic biosensors with a custom-designed photodetector and readout chip. Leveraging the molecular specificity of living sensors, bacteria were genetically encoded to respond to IBD-associated molecules by luminescing. Low-power electronic readout circuits (e.g., using nanowatt power) integrated into the device convert the light from just 1 ?L of bacterial culture into a wireless signal. Biosensor monitoring was demonstrated in the GI tract of small and large animal models and integration of all components into a sub-1.4 cm3 ingestible form factor capable of supporting wireless communication.
    Type: Application
    Filed: April 26, 2022
    Publication date: December 1, 2022
    Applicants: Massachusetts Institute of Technology, Trustees of Boston University, The Brigham and Women's Hospital, Inc.
    Inventors: Timothy Kuan-Ta Lu, Rabia Tugce Yazicigil Kirby, Carlo Giovanni Traverso, Jenna Ahn, Maria Eugenia Inda, Miguel Jimenez, Qijun Liu, Phillip Nadeau, Christoph Winfried Johannes Steiger, Adam Wentworth
  • Publication number: 20210384918
    Abstract: Described is a decoder suitable for use with any communication or storage system. The described decoder has a modular decoder hardware architecture capable of implementing a noise guessing process and due to its dependency only on noise, the decoder design is independent of any encoder, thus making it a universal decoder. Hence, the decoder architecture described herein is agnostic to any coding scheme.
    Type: Application
    Filed: April 8, 2021
    Publication date: December 9, 2021
    Inventors: Amit SOLOMON, Muriel MEDARD, Kenneth R. DUFFY, Rabia Tugce Yazicigil KIRBY, Vaibhav BANSAL, Wei AN
  • Patent number: 10644735
    Abstract: Mechanisms for interferer detection can detect interferers by detecting elevated signal amplitudes in one or more of a plurality of bins (or bands) in a frequency range between a maximum frequency (fMAX) and a minimum frequency (fMIN). To perform rapid interferer detection, the mechanisms downconvert an input signal x(t) with a local oscillator (LO) to a complex baseband signal xI(t)+jxQ(t). xI(t) and xQ(t) are then multiplied by m unique pseudorandom noise (PN) sequences (e.g., Gold sequences) gm(t) to produce m branch signals for I and m branch signals for Q. The branch signals are then low pass filtered, converted from analog to digital form, and pairwise combined by a pairwise complex combiner. Finally, a support recovery function is used to identify interferers.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: May 5, 2020
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Peter R. Kinget, John Wright, Rabia Tugce Yazicigil
  • Patent number: 10122396
    Abstract: Mechanisms for interferer detection can detect interferers by detecting elevated signal amplitudes in one or more of a plurality of bins (or bands) in a frequency range between a maximum frequency (fMAX) and a minimum frequency (fMIN). To perform rapid interferer detection, the mechanisms downconvert an input signal x(t) with a local oscillator (LO) to a complex baseband signal xI(t)+jxQ(t). xI(t) and xQ(t) are then multiplied by m unique pseudorandom noise (PN) sequences (e.g., Gold sequences) gm(t) to produce m branch signals for I and m branch signals for Q. The branch signals are then low pass filtered, converted from analog to digital form, and pairwise combined by a pairwise complex combiner. Finally, a support recovery function is used to identify interferers.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: November 6, 2018
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Peter R. Kinget, John Wright, Rabia Tugce Yazicigil
  • Publication number: 20180219567
    Abstract: Mechanisms for interferer detection can detect interferers by detecting elevated signal amplitudes in one or more of a plurality of bins (or bands) in a frequency range between a maximum frequency (fMAX) and a minimum frequency (fMIN). To perform rapid interferer detection, the mechanisms downconvert an input signal x(t) with a local oscillator (LO) to a complex baseband signal xI(t)+jxQ(t). xI(t) and xQ(t) are then multiplied by m unique pseudorandom noise (PN) sequences (e.g., Gold sequences) gm(t) to produce m branch signals for I and m branch signals for Q. The branch signals are then low pass filtered, converted from analog to digital form, and pairwise combined by a pairwise complex combiner. Finally, a support recovery function is used to identify interferers.
    Type: Application
    Filed: August 14, 2017
    Publication date: August 2, 2018
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Peter R. Kinget, John Wright, Rabia Tugce Yazicigil
  • Patent number: 9762273
    Abstract: Mechanisms for interferer detection can detect interferers by detecting elevated signal amplitudes in one or more of a plurality of bins (or bands) in a frequency range between a maximum frequency (fMAX) and a minimum frequency (fMIN). To perform rapid interferer detection, the mechanisms downconvert an input signal x(t) with a local oscillator (LO) to a complex baseband signal xI(t)+jxQ(t). xI(t) and xQ(t) are then multiplied by m unique pseudorandom noise (PN) sequences (e.g., Gold sequences) gm(t) to produce m branch signals for I and m branch signals for Q. The branch signals are then low pass filtered, converted from analog to digital form, and pairwise combined by a pairwise complex combiner. Finally, a support recovery function is used to identify interferers.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: September 12, 2017
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Peter R Kinget, John Wright, Rabia Tugce Yazicigil
  • Publication number: 20170250716
    Abstract: Mechanisms for interferer detection can detect interferers by detecting elevated signal amplitudes in one or more of a plurality of bins (or bands) in a frequency range between a maximum frequency (fMAX) and a minimum frequency (fMIN). To perform rapid interferer detection, the mechanisms downconvert an input signal x(t) with a local oscillator (LO) to a complex baseband signal xI(t)+jxQ(t). xI(t) and xQ(t) are then multiplied by m unique pseudorandom noise (PN) sequences (e.g., Gold sequences) gm(t) to produce m branch signals for I and m branch signals for Q. The branch signals are then low pass filtered, converted from analog to digital form, and pairwise combined by a pairwise complex combiner. Finally, a support recovery function is used to identify interferers.
    Type: Application
    Filed: September 14, 2015
    Publication date: August 31, 2017
    Inventors: Peter R. Kinget, John Wright, Rabia Tugce Yazicigil
  • Publication number: 20170026066
    Abstract: Mechanisms for interferer detection can detect interferers by detecting elevated signal amplitudes in one or more of a plurality of bins (or bands) in a frequency range between a maximum frequency (fMAX) and a minimum frequency (fMIN). To perform rapid interferer detection, the mechanisms downconvert an input signal x(t) with a local oscillator (LO) to a complex baseband signal xI(t)+jxQ(t). xI(t) and xQ(t) are then multiplied by m unique pseudorandom noise (PN) sequences (e.g., Gold sequences) gm(t) to produce m branch signals for I and m branch signals for Q. The branch signals are then low pass filtered, converted from analog to digital form, and pairwise combined by a pairwise complex combiner. Finally, a support recovery function is used to identify interferers.
    Type: Application
    Filed: October 4, 2016
    Publication date: January 26, 2017
    Inventors: Peter R. Kinget, John Wright, Rabia Tugce Yazicigil