Patents by Inventor Rabih Nassif

Rabih Nassif has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11848090
    Abstract: A training system for a neurostimulation system that may be used to simulate a neurostimulator programming session and/or lead placement. The system may include a training device that may be coupled to a neurostimulator programmer and may include an interface to allow user interaction and/or display information relevant to the stimulation. The trainer device may include circuitry for simulating a neurostimulator such as an IPG or EPG, and may include circuitry for simulating impedance associated with lead placement.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: December 19, 2023
    Assignee: AXONICS, INC.
    Inventors: Faizal Abdeen, Charles Borlase, Prabodh Mathur, Rabih Nassif, Flavio Ono, Franklin S. Portillo, John Woock
  • Patent number: 11766568
    Abstract: An implantable pulse generator that includes a current source/sink generator is disclosed herein. The current source/sink generator includes a current drive differential amplifier. The current driver differential amplifier is configured to selectively source current to, or sink current from a target tissue. The current drive differential amplifier includes an inverting input and a non-inverting input. One of the inputs of the current drive differential amplifier is connected to a virtual ground, and the other is connected to a current command. A stimulation controller can supply a voltage to the other of the inputs of the current drive differential amplifier to select either current sourcing or current sinking.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: September 26, 2023
    Assignee: Axonics, Inc.
    Inventor: Rabih Nassif
  • Publication number: 20230277859
    Abstract: Devices, systems, and methods for coupling with an implantable neurostimulator for delivering one or more electrical pulses to a target region within a patient's body are disclosed herein. A device, such as a charger, can include: a power source for storing electrical energy; a resonant circuit that can have a plurality of selectable natural frequencies; a driver coupled to the power source and the resonant circuit; and a processor coupled to the resonant circuit to control the natural frequency of the resonant circuit. The processor can determine the natural frequency of the implantable neurostimulator, and can control the resonant circuit according to the determined natural frequency of the neurostimulator.
    Type: Application
    Filed: February 17, 2023
    Publication date: September 7, 2023
    Applicant: Axonics, Inc
    Inventors: Rabih NASSIF, Steve HANKINS, Christopher J. BOWES
  • Publication number: 20230181913
    Abstract: A pulse generator that includes a communications module is disclosed herein. The communication module includes a transceiver and an antenna circuit. The antenna circuit includes a first pathway having a capacitor and a second, parallel pathway including a capacitor, and a resistor, and a radiating element arranged in series. The antenna circuit is tuned to have a resonant frequency corresponding to a desired transmission frequency and a bandwidth corresponding to shifts in the resonant frequency arising from the implantation of the antenna.
    Type: Application
    Filed: September 19, 2022
    Publication date: June 15, 2023
    Inventors: Rabih Nassif, Hisham Hasbini
  • Patent number: 11642537
    Abstract: Systems and methods for improved power transmission are disclosed herein. The system can include an implantable neurostimulator for delivering the one or more electrical pulses to a patient's body. The implantable neurostimulator can include a hermetic housing made of a biocompatible material, an energy storage feature for powering the implantable neurostimulator, a receiving coil assembly including an elongate wire winding wound around a first ferritic core, and control circuitry for controlling recharging of the energy storage feature. The system can include a charging device for wirelessly delivering energy to the implantable neurostimulator. The charging device can include a sending coil assembly including a planar wire winding coupled to a surface of a second ferritic core.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: May 9, 2023
    Assignee: Axonics, Inc.
    Inventor: Rabih Nassif
  • Publication number: 20230080703
    Abstract: An implantable neurostimulator for delivering one or more stimulation pulses to a target region within a patient's body. The implantable neurostimulator including a housing and an energy storage feature. There is also a lead coupled to the hermetic housing and a plurality of electrodes located proximate to a distal end of the lead. The neurostimulator includes stimulation circuitry that includes an adjustable resistance element. A voltage of the electric signal derived from the energy storage feature and a resistance of the adjustable resistance element are both adjusted based on a measurement of a value indicative of a tissue impedance of the target region to provide a desired value of a stimulation current for the one or more stimulation pulses.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 16, 2023
    Applicant: Axonics, Inc.
    Inventor: Rabih NASSIF
  • Patent number: 11602638
    Abstract: Devices, systems, and methods for coupling with an implantable neurostimulator for delivering one or more electrical pulses to a target region within a patient's body are disclosed herein. A device, such as a charger, can include: a power source for storing electrical energy; a resonant circuit that can have a plurality of selectable natural frequencies; a driver coupled to the power source and the resonant circuit; and a processor coupled to the resonant circuit to control the natural frequency of the resonant circuit. The processor can determine the natural frequency of the implantable neurostimulator, and can control the resonant circuit according to the determined natural frequency of the neurostimulator.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: March 14, 2023
    Assignee: AXONICS, INC.
    Inventors: Rabih Nassif, Steve Hankins, Christopher J. Bowes
  • Patent number: 11478648
    Abstract: A pulse generator that includes a communications module is disclosed herein. The communication module includes a transceiver and an antenna circuit. The antenna circuit includes a first pathway having a capacitor and a second, parallel pathway including a capacitor, and a resistor, and a radiating element arranged in series. The antenna circuit is tuned to have a resonant frequency corresponding to a desired transmission frequency and a bandwidth corresponding to shifts in the resonant frequency arising from the implantation of the antenna.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: October 25, 2022
    Assignee: AXONICS, INC.
    Inventors: Rabih Nassif, Hisham Hasbini
  • Publication number: 20210353357
    Abstract: A medical device for tissue ablation may include a catheter shaft, an expandable member disposed on or coupled to the catheter shaft, and a plurality of elongate electrode assemblies each constructed as a flexible circuit. The expandable member may be configured to shift between an unexpanded configuration and an expanded configuration. The plurality of electrode assemblies may be disposed on an outer surface of the expandable member. Each of the plurality of electrode assemblies may include a temperature sensor aligned with two or more electrodes.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 18, 2021
    Inventors: HONG CAO, TRAVIS J. SCHAUER, HENRY H. LEE, PRABODH MATHUR, RABIH NASSIF, ANDRES DANDLER
  • Publication number: 20210322778
    Abstract: Devices, systems, and methods for coupling with an implantable neurostimulator for delivering one or more electrical pulses to a target region within a patient's body are disclosed herein. A device, such as a charger, can include: a power source for storing electrical energy; a resonant circuit that can have a plurality of selectable natural frequencies; a driver coupled to the power source and the resonant circuit; and a processor coupled to the resonant circuit to control the natural frequency of the resonant circuit. The processor can determine the natural frequency of the implantable neurostimulator, and can control the resonant circuit according to the determined natural frequency of the neurostimulator.
    Type: Application
    Filed: July 1, 2021
    Publication date: October 21, 2021
    Inventors: Rabih Nassif, Steve Hankins, Christopher J. Bowes
  • Patent number: 11116571
    Abstract: A medical device for tissue ablation may include a catheter shaft, an expandable member disposed on or coupled to the catheter shaft, and a plurality of elongate electrode assemblies each constructed as a flexible circuit. The expandable member may be configured to shift between an unexpanded configuration and an expanded configuration. The plurality of electrode assemblies may be disposed on an outer surface of the expandable member. Each of the plurality of electrode assemblies may include a temperature sensor aligned with two or more electrodes.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: September 14, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Hong Cao, Travis J. Schauer, Henry H. Lee, Prabodh Mathur, Rabih Nassif, Andres Dandler
  • Patent number: 11083903
    Abstract: Devices, systems, and methods for coupling with an implantable neurostimulator for delivering one or more electrical pulses to a target region within a patient's body are disclosed herein. A device, such as a charger, can include: a power source for storing electrical energy; a resonant circuit that can have a plurality of selectable natural frequencies; a driver coupled to the power source and the resonant circuit; and a processor coupled to the resonant circuit to control the natural frequency of the resonant circuit. The processor can control the natural frequency of the resonant circuit according to stored data associated with the implantable neurostimulator.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: August 10, 2021
    Assignee: AXONICS, INC.
    Inventors: Rabih Nassif, Steve Hankins, Christopher J. Bowes
  • Patent number: 10850104
    Abstract: An implantable pulse generator that includes a current source/sink generator is disclosed herein. The current source/sink generator includes a current drive differential amplifier. The current driver differential amplifier is configured to selectively source current to, or sink current from a target tissue. The current drive differential amplifier includes an inverting input and a non-inverting input. One of the inputs of the current drive differential amplifier is connected to a virtual ground, and the other is connected to a current command. A stimulation controller can supply a voltage to the other of the inputs of the current drive differential amplifier to select either current sourcing or current sinking.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: December 1, 2020
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventor: Rabih Nassif
  • Publication number: 20200372996
    Abstract: A training system for a neurostimulation system that may be used to simulate a neurostimulator programming session and/or lead placement. The system may include a training device that may be coupled to a neurostimulator programmer and may include an interface to allow user interaction and/or display information relevant to the stimulation. The trainer device may include circuitry for simulating a neurostimulator such as an IPG or EPG, and may include circuitry for simulating impedance associated with lead placement.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 26, 2020
    Inventors: Faizal Abdeen, Charles Borlase, Prabodh Mathur, Rabih Nassif, Flavio Ono, Franklin S. Portillo, John Woock
  • Publication number: 20200368534
    Abstract: Systems, devices, and methods for delivering one or more electrical pulses to a target region within a patient's body are disclosed herein. An implantable neurostimulator for delivering such one or more electrical pulses can include a hermetic housing made of a biocompatible material, an energy storage feature, and at least one lead. The implantable neurostimulator can further include stimulation circuitry that can include a first circuit and a second circuit. The first circuit can include an adjustable resistance element having a first terminal and a second terminal, a first switch coupled to the first terminal of the adjustable resistance element and selectively coupleable with a stimulation-voltage node and a ground node, a second switch selectively coupling the a first one of the plurality of electrodes to one of: the second terminal of the adjustable resistance element; and the stimulation-voltage node.
    Type: Application
    Filed: May 19, 2020
    Publication date: November 26, 2020
    Inventor: Rabih Nassif
  • Publication number: 20200324129
    Abstract: A pulse generator that includes a communications module is disclosed herein. The communication module includes a transceiver and an antenna circuit. The antenna circuit includes a first pathway having a capacitor and a second, parallel pathway including a capacitor, and a resistor, and a radiating element arranged in series. The antenna circuit is tuned to have a resonant frequency corresponding to a desired transmission frequency and a bandwidth corresponding to shifts in the resonant frequency arising from the implantation of the antenna.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Inventors: Rabih Nassif, Hisham Hasbini
  • Publication number: 20200289832
    Abstract: Systems and methods for improved power transmission are disclosed herein. The system can include an implantable neurostimulator for delivering the one or more electrical pulses to a patient's body. The implantable neurostimulator can include a hermetic housing made of a biocompatible material, an energy storage feature for powering the implantable neurostimulator, a receiving coil assembly including an elongate wire winding wound around a first ferritic core, and control circuitry for controlling recharging of the energy storage feature. The system can include a charging device for wirelessly delivering energy to the implantable neurostimulator. The charging device can include a sending coil assembly including a planar wire winding coupled to a surface of a second ferritic core.
    Type: Application
    Filed: March 11, 2020
    Publication date: September 17, 2020
    Inventor: Rabih Nassif
  • Patent number: 10722721
    Abstract: A pulse generator that includes a communications module is disclosed herein. The communication module includes a transceiver and an antenna circuit. The antenna circuit includes a first pathway having a capacitor and a second, parallel pathway including a capacitor, and a resistor, and a radiating element arranged in series. The antenna circuit is tuned to have a resonant frequency corresponding to a desired transmission frequency and a bandwidth corresponding to shifts in the resonant frequency arising from the implantation of the antenna.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: July 28, 2020
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Rabih Nassif, Hisham Hasbini
  • Publication number: 20200230427
    Abstract: Devices, systems, and methods for coupling with an implantable neurostimulator for delivering one or more electrical pulses to a target region within a patient's body are disclosed herein. A device, such as a charger, can include: a power source for storing electrical energy; a resonant circuit that can have a plurality of selectable natural frequencies; a driver coupled to the power source and the resonant circuit; and a processor coupled to the resonant circuit to control the natural frequency of the resonant circuit. The processor can control the natural frequency of the resonant circuit according to stored data associated with the implantable neurostimulator.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 23, 2020
    Inventors: Rabih Nassif, Steve Hankins, Christopher J. Bowes
  • Patent number: 10603500
    Abstract: Devices, systems, and methods for coupling with an implantable neurostimulator for delivering one or more electrical pulses to a target region within a patient's body are disclosed herein. A device, such as a charger, can include: a power source for storing electrical energy; a resonant circuit that can have a plurality of selectable natural frequencies; a driver coupled to the power source and the resonant circuit; and a processor coupled to the resonant circuit to control the natural frequency of the resonant circuit. The processor can control the natural frequency of the resonant circuit according to stored data associated with the implantable neurostimulator.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: March 31, 2020
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Rabih Nassif, Steve Hankins, Christopher J. Bowes