Patents by Inventor Rachel Collier

Rachel Collier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9339585
    Abstract: A surgical implant component comprising an implant component body manufactured from a Co-based substrate alloy comprising Co, Cr, Mo, Si, and C, and a coating on a bone-ingrowth surface of the component body manufactured from a Co-based coating alloy comprising Co, Cr, Mo, Si, C and B. The coating is a network of fused particles of the Co-based coating alloy with spherical particles, irregular aspherical particles, and between about 35 and about 70 volume % porosity. A method of manufacturing the foregoing surgical implant component.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: May 17, 2016
    Assignee: KENNAMETAL INC.
    Inventors: Matthew Yao, Rachel Collier, Abdelhakim Belhadjhamida, Danie DeWet
  • Publication number: 20150283295
    Abstract: A surgical implant component comprising an implant component body manufactured from a Co-based substrate alloy comprising Co, Cr, Mo, Si, and C, and a coating on a bone-ingrowth surface of the component body manufactured from a Co-based coating alloy comprising Co, Cr, Mo, Si, C and B. The coating is a network of fused particles of the Co-based coating alloy with spherical particles, irregular aspherical particles, and between about 35 and about 70 volume % porosity. A method of manufacturing the foregoing surgical implant component.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 8, 2015
    Applicant: Kennametal Inc.
    Inventors: Matthew Yao, Rachel Collier, Abdelhakim Belhadjhamida, Danie DeWet
  • Patent number: 9078753
    Abstract: A surgical implant component comprising an implant component body manufactured from an alloy comprising from about 23 to about 33 wt % Cr, from about 8 to about 20 wt % Mo, from about 0.05 to about 1.5 wt % Si, from about 0.35 to about 3.5 wt % C, from about 40 to about 60 wt % Co, and incidental impurities. The implant component alloy has an atomic % ratio of (Cr+Mo+Nb)/Co of at least 0.59, a matrix metallurgical microstructure comprising between about 45% and about 85% by volume face-centered cubic structure, and between about 15% and about 55% by volume hexagonal close-packed structure; and a Rockwell C hardness of greater than 35. A method for manufacturing a surgical implant component body for a surgical implant by a manufacturing method selected from the group consisting of casting, forging, and powder metallurgy pressing-plus-sintering from an alloy.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: July 14, 2015
    Assignee: KENNAMETAL INC.
    Inventors: Matthew Yao, Rachel Collier, Danie DeWet
  • Patent number: 8828312
    Abstract: Forming a wear- and corrosion-resistant coating on an industrial component such as a chemical processing or nuclear power valve component by applying a cobalt-based dilution buffer layer to an iron-based substrate by slurry coating, and then applying by welding a cobalt-based build-up layer over the cobalt-based dilution buffer layer. An industrial component having a dilution buffer layer and a welding build-up layer thereover.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: September 9, 2014
    Assignee: Kennametal Inc.
    Inventors: Matthew Yao, Rachel Collier, Danie DeWet
  • Publication number: 20130297037
    Abstract: A surgical implant component comprising an implant component body manufactured from an alloy comprising from about 23 to about 33 wt % Cr, from about 8 to about 20 wt % Mo, from about 0.05 to about 1.5 wt % Si, from about 0.35 to about 3.5 wt % C, from about 40 to about 60 wt % Co, and incidental impurities. The implant component alloy has an atomic % ratio of (Cr+Mo+Nb)/Co of at least 0.59, a matrix metallurgical microstructure comprising between about 45% and about 85% by volume face-centered cubic structure, and between about 15% and about 55% by volume hexagonal close-packed structure; and a Rockwell C hardness of greater than 35. A method for manufacturing a surgical implant component body for a surgical implant by a manufacturing method selected from the group consisting of casting, forging, and powder metallurgy pressing-plus-sintering from an alloy.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: DELORO STELLITE HOLDINGS CORPORATION
    Inventors: Matthew Yao, Rachel Collier, Danie DeWet