Patents by Inventor Rachel Prestayko

Rachel Prestayko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11545278
    Abstract: Provided is a method of forming a conductive polymer composite. The method includes forming a mixture. The mixture includes a first thermoplastic polymer, a second thermoplastic polymer and a plurality of metal particles. The first thermoplastic polymer and the second thermoplastic polymer are immiscible with each other. The plurality of metal particles include at least one metal that is immiscible with both the first thermoplastic polymer and the second thermoplastic polymer. The method includes heating the mixture to a temperature greater than or equal to a melting point of the metal.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: January 3, 2023
    Assignee: XEROX CORPORATION
    Inventors: Rachel Prestayko, Sarah J. Vella, Carolyn Moorlag, Barkev Keoshkerian, Jordan H. Wosnick
  • Patent number: 10796813
    Abstract: A conductive polymer composite includes: a thermoplastic polymer; a plurality of carbon nanotubes; and a plurality of metallic particulates in an amount ranging from about 0.5% to about 80% by weight relative to the total weight of the conductive polymer composite.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: October 6, 2020
    Assignee: XEROX CORPORATION
    Inventors: Rachel Prestayko, Sarah J. Vella, Carolyn Moorlag, Barkev Keoshkerian
  • Patent number: 10685763
    Abstract: A conductive polymer composite is disclosed. The composite comprises a thermoplastic polymer; carbon nanotubes in an amount ranging from 2% to about 40% by weight, relative to the total weight of the conductive polymer composite; and a plurality of graphitic particles in an amount ranging from about 2% to about 50% by weight, relative to the total weight of the conductive polymer composite.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: June 16, 2020
    Assignee: XEROX CORPORATION
    Inventors: Rachel Prestayko, Sarah J. Vella, Carolyn Moorlag, Barkev Keoshkerian
  • Patent number: 10649355
    Abstract: A method of making a composite feed material for fused deposition modeling (FDM) is disclosed. The method comprises providing composite particles made by a process of emulsion aggregation, the composite particles comprising at least one thermoplastic polymer and at least one carbon particle material. A composite feed material is formed for fused deposition modeling from the composite particles. The composite feed material is in a form selected from a filament and a paste.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: May 12, 2020
    Assignee: XEROX CORPORATION
    Inventors: Barkev Keoshkerian, Rachel Prestayko, Kimberly D. Nosella, Valerie M. Farrugia
  • Patent number: 10418146
    Abstract: A conductive polymer composite is disclosed. The composite comprises a thermoplastic polymer and a plurality of metal-plated carbon nanotubes. A method of three dimensional printing using the conductive polymer composite and a filament comprising the conductive polymer composite are also disclosed.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: September 17, 2019
    Assignee: XEROX CORPORATION
    Inventors: Sarah J. Vella, Rachel Prestayko, Carolyn Moorlag, Barkev Keoshkerian
  • Patent number: 10381134
    Abstract: A composite manufacture includes an extrudable thermoplastic matrix and a photochromic colorant, the photochromic colorant conferring to the composite a reversible strain-induced color change property. Methods include adding photochromic colorant to an extrudable thermoplastic polymer matrix to form a mixture, heating the mixture to form a composite, the photochromic colorant conferring to the composite a reversible strain-induced color change property. The composite manufactures can be used in cable coatings permitting visual detection of mechanical stresses in a wire based on the reversible strain-induced color change property.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: August 13, 2019
    Assignee: XEROX CORPORATION
    Inventors: Naveen Chopra, Rachel Prestayko, Sarah J. Vella
  • Patent number: 10315409
    Abstract: A method of selective laser sintering is disclosed. The method comprises providing composite particles made by emulsion aggregation, the composite particles comprising at least one thermoplastic polymer and at least one carbon particle material. The composite particles are exposed to a laser to fuse the composite particles.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: June 11, 2019
    Assignee: XEROX CORPORATION
    Inventors: Barkev Keoshkerian, Jordan H. Wosnick, Rachel Prestayko, Kimberly D. Nosella, Valerie M. Farrugia, Edward G. Zwartz
  • Publication number: 20190156967
    Abstract: Provided is a method of forming a conductive polymer composite. The method includes forming a mixture. The mixture includes a first thermoplastic polymer, a second thermoplastic polymer and a plurality of metal particles. The first thermoplastic polymer and the second thermoplastic polymer are immiscible with each other. The plurality of metal particles include at least one metal that is immiscible with both the first thermoplastic polymer and the second thermoplastic polymer. The method includes heating the mixture to a temperature greater than or equal to a melting point of the metal.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Applicant: xerox corporation
    Inventors: Rachel Prestayko, Sarah J. Vella, Carolyn Moorlag, Barkev Keoshkerian, Jordan H. Wosnick
  • Patent number: 10234342
    Abstract: An article includes a body and at least one 3D-printable conductive composite segment in mechanical communication with the body. The body includes a first material and the at least one conductive composite segment includes a matrix material, a plurality of carbon nanotubes, and conductive additives. The conductive additives include a plurality of metallic particulates, a plurality of graphitic particles or a combination thereof.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: March 19, 2019
    Assignee: XEROX CORPORATION
    Inventors: Carolyn Moorlag, Rachel Prestayko, Barkev Keoshkerian, Sarah J. Vella
  • Patent number: 10229769
    Abstract: Provided is a method of forming a conductive polymer composite. The method includes forming a mixture. The mixture includes a first thermoplastic polymer, a second thermoplastic polymer and a plurality of metal particles. The first thermoplastic polymer and the second thermoplastic polymer are immiscible with each other. The plurality of metal particles include at least one metal that is immiscible with both the first thermoplastic polymer and the second thermoplastic polymer. The method includes heating the mixture to a temperature greater than or equal to a melting point of the metal.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: March 12, 2019
    Assignee: XEROX CORPORATION
    Inventors: Rachel Prestayko, Sarah J. Vella, Carolyn Moorlag, Barkev Keoshkerian, Jordan H. Wosnick
  • Patent number: 10186344
    Abstract: A conductive polymer composite is disclosed. The composite comprises a thermoplastic polymer; carbon nanotubes; at least one electron donor molecule and at least one electron acceptor molecule. A method of three-dimensional printing using the conductive polymer composite and a conductive polymer composite filament are also disclosed.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: January 22, 2019
    Assignee: XEROX CORPORATION
    Inventors: Rachel Prestayko, Sarah J. Vella, Carolyn Moorlag, Barkev Keoshkerian
  • Publication number: 20180022042
    Abstract: A method of making a composite feed material for fused deposition modeling (FDM) is disclosed. The method comprises providing composite particles made by a process of emulsion aggregation, the composite particles comprising at least one thermoplastic polymer and at least one carbon particle material. A composite feed material is formed for fused deposition modeling from the composite particles. The composite feed material is in a form selected from a filament and a paste.
    Type: Application
    Filed: July 20, 2016
    Publication date: January 25, 2018
    Inventors: Barkev Keoshkerian, Rachel Prestayko, Kimberly D. Nosella, Valerie M. Farrugia
  • Publication number: 20180022043
    Abstract: A method of selective laser sintering is disclosed. The method comprises providing composite particles made by emulsion aggregation, the composite particles comprising at least one thermoplastic polymer and at least one carbon particle material. The composite particles are exposed to a laser to fuse the composite particles.
    Type: Application
    Filed: July 20, 2016
    Publication date: January 25, 2018
    Inventors: Barkev Keoshkerian, Jordan H. Wosnick, Rachel Prestayko, Kimberly D. Nosella, Valerie M. Farrugia, Edward G. Zwartz
  • Publication number: 20170284876
    Abstract: An article includes a body and at least one 3D-printable conductive composite segment in mechanical communication with the body. The body includes a first material and the at least one conductive composite segment includes a matrix material, a plurality of carbon nanotubes, and conductive additives. The conductive additives include a plurality of metallic particulates, a plurality of graphitic particles or a combination thereof.
    Type: Application
    Filed: April 4, 2016
    Publication date: October 5, 2017
    Inventors: Carolyn Moorlag, Rachel Prestayko, Barkev Keoshkerian, Sarah J. Vella
  • Publication number: 20170259497
    Abstract: A method includes adding about 5 weight percent to about 25 weight percent of carbon nanotubes to a crystalline or semi-crystalline polymer to form a composite and forming a filament or particles from the composite, the filament or particles having a size suitable for use in additive manufacturing, in the absence of the carbon nanotubes a melt viscosity of the crystalline or semi-crystalline polymer is below 100 Pa·s, preventing its use in additive manufacturing. The filament or particles comprising carbon nanotubes can be used in methods of additive manufacturing.
    Type: Application
    Filed: March 9, 2016
    Publication date: September 14, 2017
    Inventors: Rachel PRESTAYKO, Sarah J. VELLA, Carolyn MOORLAG, Barkev KEOSHKERIAN, C. Geoffrey ALLEN
  • Publication number: 20170236613
    Abstract: A conductive polymer composite includes: a thermoplastic polymer; a plurality of carbon nanotubes; and a plurality of metallic particulates in an amount ranging from about 0.5% to about 80% by weight relative to the total weight of the conductive polymer composite.
    Type: Application
    Filed: February 16, 2016
    Publication date: August 17, 2017
    Inventors: Rachel PRESTAYKO, Sarah J. VELLA, Carolyn MOORLAG, Barkev KEOSHKERIAN
  • Publication number: 20170207001
    Abstract: A conductive polymer composite is disclosed. The composite comprises a thermoplastic polymer and a plurality of metal-plated carbon nanotubes. A method of three dimensional printing using the conductive polymer composite and a filament comprising the conductive polymer composite are also disclosed.
    Type: Application
    Filed: January 19, 2016
    Publication date: July 20, 2017
    Inventors: Sarah J. Vella, Rachel PRESTAYKO, Carolyn Moorlag, Barkev Keoshkerian
  • Publication number: 20170207000
    Abstract: A conductive polymer composite is disclosed. The composite comprises a thermoplastic polymer; carbon nanotubes in an amount ranging from 2% to about 40% by weight, relative to the total weight of the conductive polymer composite; and a plurality of graphitic particles in an amount ranging from about 2% to about 50% by weight, relative to the total weight of the conductive polymer composite.
    Type: Application
    Filed: January 19, 2016
    Publication date: July 20, 2017
    Inventors: Rachel Prestayko, Sarah J. Vella, Carolyn Moorlag, Barkev Keoshkerian
  • Publication number: 20170206999
    Abstract: A conductive polymer composite is disclosed. The composite comprises a thermoplastic polymer; carbon nanotubes; at least one electron donor molecule and at least one electron acceptor molecule. A method of three-dimensional printing using the conductive polymer composite and a conductive polymer composite filament are also disclosed.
    Type: Application
    Filed: January 19, 2016
    Publication date: July 20, 2017
    Inventors: Rachel Prestayko, Sarah J. Vella, Carolyn Moorlag, Barkev Keoshkerian
  • Publication number: 20170186514
    Abstract: A composite manufacture includes an extrudable thermoplastic matrix and a photochromic colorant, the photochromic colorant conferring to the composite a reversible strain-induced color change property. Methods include adding photochromic colorant to an extrudable thermoplastic polymer matrix to form a mixture, heating the mixture to form a composite, the photochromic colorant conferring to the composite a reversible strain-induced color change property. The composite manufactures can be used in cable coatings permitting visual detection of mechanical stresses in a wire based on the reversible strain-induced color change property.
    Type: Application
    Filed: December 29, 2015
    Publication date: June 29, 2017
    Inventors: Naveen Chopra, Rachel Prestayko, Sarah J. Vella