Patents by Inventor Rachid Gafsi

Rachid Gafsi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10678075
    Abstract: The disclosure is directed to an element that is capable of acting as both an optical polarizer and an optical attenuator, thus integrating both functions into a single element. The element comprises a monolithic or one piece glass polarizer (herein also call the “substrate”), a multilayer “light attenuation or light attenuating” (“LA”) coating that has been optimized for use at selected wavelengths and attenuations deposited on at least one polarizer facial surface, and a multilayer anti-reflective (AR) coating on top of the LA coating. The disclosure is further directed to an integrated optical isolator/attenuator comprising a first and a second polarizing elements and a Faraday rotator for rotating light positioned after the first polarizing element and before the second polarizing element, the integrated optical isolator/attenuator both polarizing and attenuation a light beam from a light source.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: June 9, 2020
    Assignee: Corning Incorporated
    Inventors: Rachid Gafsi, Jue Wang
  • Publication number: 20190072788
    Abstract: The disclosure is directed to an element that is capable of acting as both an optical polarizer and an optical attenuator, thus integrating both functions into a single element. The element comprises a monolithic or one piece glass polarizer (herein also call the “substrate”), a multilayer “light attenuation or light attenuating” (“LA”) coating that has been optimized for use at selected wavelengths and attenuations deposited on at least one polarizer facial surface, and a multilayer anti-reflective (AR) coating on top of the LA coating. The disclosure is further directed to an integrated optical isolator/attenuator comprising a first and a second polarizing elements and a Faraday rotator for rotating light positioned after the first polarizing element and before the second polarizing element, the integrated optical isolator/attenuator both polarizing and attenuation a light beam from a light source.
    Type: Application
    Filed: November 6, 2018
    Publication date: March 7, 2019
    Inventors: Rachid Gafsi, Jue Wang
  • Patent number: 10197823
    Abstract: The disclosure is directed to an element that is capable of acting as both an optical polarizer and an optical attenuator, thus integrating both functions into a single element. The element comprises a monolithic or one piece glass polarizer (herein also call the “substrate”), a multilayer “light attenuation or light attenuating” (“LA”) coating that has been optimized for use at selected wavelengths and attenuations deposited on at least one polarizer facial surface, and a multilayer anti-reflective (AR) coating on top of the LA coating. The disclosure is further directed to an integrated optical isolator/attenuator comprising a first and a second polarizing elements and a Faraday rotator for rotating light positioned after the first polarizing element and before the second polarizing element, the integrated optical isolator/attenuator both polarizing and attenuation a light beam from a light source.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: February 5, 2019
    Assignee: Corning Incorporated
    Inventors: Rachid Gafsi, Jue Wang
  • Publication number: 20170123240
    Abstract: The disclosure is directed to an element that is capable of acting as both an optical polarizer and an optical attenuator, thus integrating both functions into a single element. The element comprises a monolithic or one piece glass polarizer (herein also call the “substrate”), a multilayer “light attenuation or light attenuating” (“LA”) coating that has been optimized for use at selected wavelengths and attenuations deposited on at least one polarizer facial surface, and a multilayer anti-reflective (AR) coating on top of the LA coating. The disclosure is further directed to an integrated optical isolator/attenuator comprising a first and a second polarizing elements and a Faraday rotator for rotating light positioned after the first polarizing element and before the second polarizing element, the integrated optical isolator/attenuator both polarizing and attenuation a light beam from a light source.
    Type: Application
    Filed: January 11, 2017
    Publication date: May 4, 2017
    Inventors: Rachid Gafsi, Jue Wang
  • Patent number: 9581742
    Abstract: The disclosure is directed to an element that is capable of acting as both an optical polarizer and an optical attenuator, thus integrating both functions into a single element. The element comprises a monolithic or one piece glass polarizer (herein also call the “substrate”), a multilayer “light attenuation or light attenuating” (“LA”) coating that has been optimized for use at selected wavelengths and attenuations deposited on at least one polarizer facial surface, and a multilayer anti-reflective (AR) coating on top of the LA coating. The disclosure is further directed to an integrated optical isolator/attenuator comprising a first and a second polarizing elements and a Faraday rotator for rotating light positioned after the first polarizing element and before the second polarizing element, the integrated optical isolator/attenuator both polarizing and attenuation a light beam from a light source.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: February 28, 2017
    Assignee: Corning Incorporated
    Inventors: Rachid Gafsi, Jue Wang
  • Publication number: 20140139910
    Abstract: The disclosure is directed to an element that is capable of acting as both an optical polarizer and an optical attenuator, thus integrating both functions into a single element. The element comprises a monolithic or one piece glass polarizer (herein also call the “substrate”), a multilayer “light attenuation or light attenuating” (“LA”) coating that has been optimized for use at selected wavelengths and attenuations deposited on at least one polarizer facial surface, and a multilayer anti-reflective (AR) coating on top of the LA coating. The disclosure is further directed to an integrated optical isolator/attenuator comprising a first and a second polarizing elements and a Faraday rotator for rotating light positioned after the first polarizing element and before the second polarizing element, the integrated optical isolator/attenuator both polarizing and attenuation a light beam from a light source.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 22, 2014
    Applicant: CORNING INCORPORATED
    Inventors: RACHID GAFSI, Jue Wang
  • Publication number: 20060139727
    Abstract: A polarization dependent isolator includes a Faraday element, a linear polarizer positioned at a first end of the Faraday element to polarize light entering the first end of the Faraday element, and a single polarization fiber positioned at a second end of the Faraday element to receive light emerging from the second end of the Faraday element. A laser module includes a semiconductor laser diode, a Faraday element positioned adjacent the semiconductor laser diode, a linear polarizer positioned at a first end of the Faraday element nearest to the semiconductor laser diode to polarizer light passing from the laser diode to the first end of the Faraday element, and a single polarization fiber positioned at a second end of the Faraday element furthest from the semiconductor laser diode to receive light emerging from the second end of the Faraday element, wherein the single polarization fiber also serves as coupling output fiber for the laser module.
    Type: Application
    Filed: March 4, 2005
    Publication date: June 29, 2006
    Inventors: Rachid Gafsi, James Hollis, Daniel Nolan, George Wildeman
  • Patent number: 6990271
    Abstract: A collimator for use at multiple wavelengths includes an optical fiber and a gradient index lens positioned at a constant distance with respect to an end of the optical fiber. The gradient index lens has a chromatic aberration at a selected pitch less than 0.01 over a selected range of the infrared spectral region.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: January 24, 2006
    Assignee: Corning Incorporated
    Inventors: Rachid Gafsi, Larry G Mann, Nagaraja Shashidhar
  • Publication number: 20040240786
    Abstract: A collimator for use at multiple wavelengths includes an optical fiber and a gradient index lens positioned at a constant distance with respect to an end of the optical fiber. The gradient index lens has a chromatic aberration at a selected pitch less than 0.01 over a selected range of the infrared spectral region.
    Type: Application
    Filed: April 26, 2004
    Publication date: December 2, 2004
    Inventors: Rachid Gafsi, Larry G. Mann, Nagaraja Shashidhar