Patents by Inventor Radha A. Venkat

Radha A. Venkat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10784959
    Abstract: A method supported by a first terminal is provided herein. To implement the method, a camera of a first terminal performs two or more captures of two or more frames along a line of sight toward a second terminal. A controller of the first terminal manipulates the two or more frames to produce two or more interim images and analyzes the two or more interim images to track a beacon of the second terminal. The controller outputs coordinates with respect to the tracked beacon to a mirror package of the first terminal.
    Type: Grant
    Filed: August 31, 2019
    Date of Patent: September 22, 2020
    Assignee: The Johns Hopkins University
    Inventors: David D. Nicholes, Radha A. Venkat
  • Patent number: 10763961
    Abstract: A device includes an optical fiber bundle having at least one optical data fiber and at least three optical tracking fibers, a mirror package configured to direct an incoming optical beam to the optical fiber bundle, at least three detectors, each detector corresponding to one of the at least three optical tracking fibers, the at least three detectors configured to receive portions of the incoming optical beam from the corresponding optical tracking fibers and convert the portions of the incoming beam to electrical tracking signals, and a controller configured to receive the electrical tracking signals from the at least three detectors and generate a feedback control based on the electrical tracking signals to control a position of the mirror package.
    Type: Grant
    Filed: August 31, 2019
    Date of Patent: September 1, 2020
    Assignee: The John Hopkins University
    Inventors: Katherine T. Newell, Juan C. Juarez, Michelle P. O'Toole, Radha A. Venkat, Lauren S. Weiss, Ryan P. DiNello-Fass
  • Publication number: 20200220619
    Abstract: A device includes an optical fiber bundle having at least one optical data fiber and at least three optical tracking fibers, a mirror package configured to direct an incoming optical beam to the optical fiber bundle, at least three detectors, each detector corresponding to one of the at least three optical tracking fibers, the at least three detectors configured to receive portions of the incoming optical beam from the corresponding optical tracking fibers and convert the portions of the incoming beam to electrical tracking signals, and a controller configured to receive the electrical tracking signals from the at least three detectors and generate a feedback control based on the electrical tracking signals to control a position of the mirror package.
    Type: Application
    Filed: August 31, 2019
    Publication date: July 9, 2020
    Inventors: Katherine T. Newell, Juan C. Juarez, Michelle P. O'Toole, Radha A. Venkat, Lauren S. Weiss, Ryan P. DiNello-Fass
  • Publication number: 20200099448
    Abstract: A method supported by a first terminal is provided herein. To implement the method, a camera of a first terminal performs two or more captures of two or more frames along a line of sight toward a second terminal. A controller of the first terminal manipulates the two or more frames to produce two or more interim images and analyzes the two or more interim images to track a beacon of the second terminal. The controller outputs coordinates with respect to the tracked beacon to a mirror package of the first terminal.
    Type: Application
    Filed: August 31, 2019
    Publication date: March 26, 2020
    Inventors: David D. Nicholes, Radha A. Venkat
  • Patent number: 9825701
    Abstract: An optical communications beacon receiver including a camera for capturing a plurality of beacon images. The plurality of beacon images includes a beacon signal transmitted from a beacon transmitter. The beacon receiver also including processing circuitry configured for determining the state of the beacon signal for each of the plurality of beacon images based on the known pattern, at least one beacon image of the plurality of beacon images includes a beacon on state and at least one beacon image of the plurality of beacon images includes a beacon off state, comparing the at least one beacon image including the beacon on state to the at least one beacon image including the beacon off state, and determining a beacon location based on the comparison of the at least one beacon image including the beacon on state to the at least one beacon image including the beacon off state.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: November 21, 2017
    Assignee: The Johns Hopkins University
    Inventors: Juan C. Juarez, Radha A. Venkat, Ricardo Luna, David A. Kitchin, Melissa E. Jansen, David W. Young, Katherine T. Souza, Joseph E. Sluz, David M. Brown, Ryan P. DiNello-Fass, Hala J. Tomey
  • Publication number: 20160112124
    Abstract: An optical communications beacon receiver including a camera for capturing a plurality of beacon images. The plurality of beacon images includes a beacon signal transmitted from a beacon transmitter. The beacon receiver also including processing circuitry configured for determining the state of the beacon signal for each of the plurality of beacon images based on the known pattern, at least one beacon image of the plurality of beacon images includes a beacon on state and at least one beacon image of the plurality of beacon images includes a beacon off state, comparing the at least one beacon image including the beacon on state to the at least one beacon image including the beacon off state, and determining a beacon location based on the comparison of the at least one beacon image including the beacon on state to the at least one beacon image including the beacon off state.
    Type: Application
    Filed: October 12, 2015
    Publication date: April 21, 2016
    Inventors: Juan C. Juarez, Radha A. Venkat, Ricardo Luna, David A. Kitchin, Melissa E. Jansen, David W. Young, Katherine T. Souza, Joseph E. Sluz, David M. Brown, Ryan P. DiNello-Fass, Hala J. Tomey