Patents by Inventor Radha Shah Parmar

Radha Shah Parmar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230137032
    Abstract: The present invention concerns antigen binding proteins and fragments thereof which specifically bind B Cell Maturation Antigen (BCMA), particularly human BCMA (hBCMA) and which inhibit the binding of BAFF and APRIL to the BCMA receptor. Further disclosed are pharmaceutical compositions, screening and medical treatment methods.
    Type: Application
    Filed: July 12, 2022
    Publication date: May 4, 2023
    Inventors: Paul ALGATE, Stephanie Jane CLEGG, Jennifer L. CRAIGEN, Paul Andrew HAMBLIN, Alan Peter LEWIS, Patrick MAYES, Radha Shah PARMAR, Trevor Anthony Kenneth WATTAM
  • Patent number: 11419945
    Abstract: The present invention concerns antigen binding proteins and fragments thereof which specifically bind B Cell Maturation Antigen (BCMA), particularly human BCMA (hBCMA) and which inhibit the binding of BAFF and APRIL to the BCMA receptor. Further disclosed are pharmaceutical compositions, screening and medical treatment methods.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: August 23, 2022
    Assignee: GLAXO GROUP LIMITED
    Inventors: Paul Algate, Stephanie Jane Clegg, Jennifer L. Craigen, Paul Andrew Hamblin, Alan Peter Lewis, Patrick Mayes, Radha Shah Parmar, Trevor Anthony Kenneth Wattam
  • Publication number: 20220064299
    Abstract: The present invention relates to an ICOS binding protein or antigen binding portion thereof that is an agonist to human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO:1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 3, 2022
    Inventors: Yao-Bin LIU, Patrick Mayes, Radha Shah Parmar
  • Publication number: 20210347902
    Abstract: The present invention relates to TrkB binding agonists, and to the use of such agonists in the treatment of neurological disorders and other disorders. The present invention also relates to specific TrkB binding agonists comprising CDRs, variable regions, heavy and light chains, and variant sequences thereof.
    Type: Application
    Filed: June 14, 2021
    Publication date: November 11, 2021
    Inventors: Tejinder Kaur BHINDER, Chong DING, Xu FENG, Wenqing JIANG, Alan Peter LEWIS, Yingli MA, Guhan NAGAPPAN, Radha Shah PARMAR, Yangsheng QIU, Liuqing YANG, Qing ZHANG, Yanjiao ZHOU
  • Patent number: 11130811
    Abstract: The present invention relates to an ICOS binding protein or antigen binding portion thereof that is an agonist to human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO: 1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: September 28, 2021
    Assignee: GlaxoSmithKline Intellectual Property Development Limited
    Inventors: Yao-Bin Liu, Patrick Mayes, Radha Shah Parmar
  • Patent number: 11078287
    Abstract: The present invention relates to TrkB binding agonists, and to the use of such agonists in the treatment of neurological disorders and other disorders. The present invention also relates to specific TrkB binding agonists comprising CDRs, variable regions, heavy and light chains, and variant sequences thereof.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: August 3, 2021
    Assignee: GLAXOSMITHKLINE INTELLECTUAL PROPERTY DEVELOPMENT LIMITED
    Inventors: Tejinder Kaur Bhinder, Chong Ding, Xu Feng, Wenqing Jiang, Alan Peter Lewis, Yingli Ma, Guhan Nagappan, Radha Shah Parmar, Yangsheng Qiu, Liuqing Yang, Qing Zhang, Yanjiao Zhou
  • Publication number: 20200197529
    Abstract: The present invention concerns antigen binding proteins and fragments thereof which specifically bind B Cell Maturation Antigen (BCMA), particularly human BCMA (hBCMA) and which inhibit the binding of BAFF and APRIL to the BCMA receptor. Further disclosed are pharmaceutical compositions, screening and medical treatment methods.
    Type: Application
    Filed: March 11, 2020
    Publication date: June 25, 2020
    Inventors: Paul Algate, Stephanie Jane Clegg, Jennifer L. Craigen, Paul Andrew Hamblin, Alan Peter Lewis, Patrick Mayes, Radha Shah Parmar, Trevor Anthony Kenneth Wattam
  • Publication number: 20200165345
    Abstract: The present invention relates to TrkB binding agonists, and to the use of such agonists in the treatment of neurological disorders and other disorders. The present invention also relates to specific TrkB binding agonists comprising CDRs, variable regions, heavy and light chains, and variant sequences thereof.
    Type: Application
    Filed: November 15, 2016
    Publication date: May 28, 2020
    Inventors: Tejinder Kaur BHINDER, Chong DING, Xu FENG, Wenqing JIANG, Alan Peter LEWIS, Yingli MA, Guhan NAGAPPAN, Radha Shah PARMAR, Yangsheng QIU, Liuqing YANG, Qing ZHANG, Yanjiao ZHOU
  • Publication number: 20200140551
    Abstract: The present invention relates to an ICOS binding protein or antigen binding portion thereof that is an agonist to human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO:1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Application
    Filed: June 13, 2019
    Publication date: May 7, 2020
    Inventors: Yao-Bin LIU, Patrick MAYES, Radha Shah PARMAR
  • Publication number: 20200123257
    Abstract: The present invention relates to an ICOS binding protein or antigen binding portion thereof that is an agonist to human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO: 1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Application
    Filed: June 14, 2019
    Publication date: April 23, 2020
    Inventors: Yao-Bin LIU, Patrick Mayes, Radha Shah Parmar
  • Patent number: 10351627
    Abstract: The present invention relates to an ICOS binding protein or antigen binding portion thereof that is an agonist to human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO:1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: July 16, 2019
    Assignee: GlaxoSmithKline Intellectual Property Development Limited
    Inventors: Yao-Bin Liu, Patrick Mayes, Radha Shah Parmar
  • Publication number: 20180334503
    Abstract: The present invention relates to an ICOS binding protein or antigen binding portion thereof that is an agonist to human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO:1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Application
    Filed: May 24, 2018
    Publication date: November 22, 2018
    Inventors: Yao-Bin Liu, Patrick Mayes, Radha Shah Parmar
  • Publication number: 20180147293
    Abstract: The present invention concerns antigen binding proteins and fragments thereof which specifically bind B Cell Maturation Antigen (BCMA), particularly human BCMA (hBCMA) and which inhibit the binding of BAFF and APRIL to the BCMA receptor. Further disclosed are pharmaceutical compositions, screening and medical treatment methods.
    Type: Application
    Filed: December 1, 2017
    Publication date: May 31, 2018
    Inventors: PAUL ALGATE, STEPHANIE JANE CLEGG, JENNIFER L. CRAIGEN, PAUL ANDREW HAMBLIN, ALAN PETER LEWIS, PATRICK MAYES, RADHA SHAH PARMAR, TREVOR ANTHONY KENNETH WATTAM
  • Patent number: 9914781
    Abstract: The present invention relates to TrkB binding agonists, and to the use of such agonists in the treatment of neurological disorders and other disorders. The present invention also relates to specific TrkB binding agonists comprising CDRs, variable regions, heavy and light chains, and variant sequences thereof.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: March 13, 2018
    Assignee: GLAXOSMITHKLINE INTELLECTUAL PROPERTY DEVELOPMENT LIMITED
    Inventors: Tejinder Kaur Bhinder, Chong Ding, Xu Feng, Wenqing Jiang, Alan Peter Lewis, Yingli Ma, Guhan Nagappan, Radha Shah Parmar, Yangsheng Qiu, Liuqing Yang, Qing Zhang, Yanjiao Zhou
  • Publication number: 20180030136
    Abstract: The present invention relates to an ICOS binding protein or antigen binding portion thereof that is an agonist to human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO:1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Application
    Filed: January 26, 2016
    Publication date: February 1, 2018
    Inventors: Yao-Bin LIU, Patrick Mayes, Daniel OLIVE, Radha Shah Parmar
  • Publication number: 20170313777
    Abstract: The present invention relates to an ICOS binding protein or antigen binding portion thereof that is an agonist to human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO: 1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Application
    Filed: July 14, 2017
    Publication date: November 2, 2017
    Inventors: Yao-Bin LIU, Patrick Mayes, Radha Shah Parmar
  • Patent number: 9771424
    Abstract: The present invention relates to an ICOS binding protein, or antigen binding portion thereof that is an agonist human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO:1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: September 26, 2017
    Assignee: GlaxoSmithKline Intellectual Property Development Limited
    Inventors: Yao-Bin Liu, Patrick Mayes, Radha Shah Parmar
  • Patent number: 9738718
    Abstract: The present invention relates to an ICOS binding protein or antigen binding portion thereof that is an agonist to human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO:1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: August 22, 2017
    Assignee: GlaxoSmithKline Intellectual Property Development Limited
    Inventors: Yao-Bin Liu, Patrick Mayes, Radha Shah Parmar
  • Publication number: 20170174767
    Abstract: The present invention relates to an ICOS binding protein or antigen binding portion thereof that is an agonist to human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO:1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 22, 2017
    Inventors: Yao-Bin LIU, Patrick Mayes, Radha Shah Parmar
  • Publication number: 20160362494
    Abstract: The present invention relates to an ICOS binding protein or antigen binding portion thereof that is an agonist to human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO:1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Application
    Filed: August 25, 2016
    Publication date: December 15, 2016
    Inventors: Yao-Bin LIU, Patrick Mayes, Radha Shah Parmar