Patents by Inventor Radhakrishna Kotti
Radhakrishna Kotti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240355685Abstract: Methods, systems, and devices for electron beam probing techniques and related structures are described to enable inline testing of memory device structures. Conductive loops may be formed, some of which may be grounded and others of which may be electrically floating in accordance with a predetermined pattern. The loops may be scanned with an electron beam and image analysis techniques may be used to generate an optical pattern. The generated optical pattern may be compared to an expected optical pattern, which may be based on the predetermined pattern of grounded and floating loops. An electrical defect may be determined based on any difference between the generated optical pattern and the expected optical pattern. For example, if a second loop appears as having a brightness corresponding to a grounded loop, this may indicate that an unintended short exists. Fabrication techniques may be adjusted for subsequent devices to correct identified defects.Type: ApplicationFiled: April 30, 2024Publication date: October 24, 2024Inventors: Amitava Majumdar, Radhakrishna Kotti, Mallesh Rajashekharaiah
-
Publication number: 20240347107Abstract: Methods, systems, and devices supporting a socket design for a memory device are described. A die may include one or more memory arrays, which each may include any number of word lines and any number of bit lines. The word lines and the bit lines may be oriented in different directions, and memory cells may be located at the intersections of word lines and bit lines. Sockets may couple the word lines and bit lines to associated drivers, and the sockets may be located such that memory cells farther from a corresponding word line socket are nearer a corresponding bit line socket, and vice versa. For example, sockets may be disposed in rows or regions that are parallel to one another, and which may be non-orthogonal to the corresponding word lines and bit lines.Type: ApplicationFiled: March 26, 2024Publication date: October 17, 2024Inventors: Amitava Majumdar, Radhakrishna Kotti, Rajasekhar Venigalla
-
Publication number: 20240282702Abstract: Some embodiments include an integrated assembly having a base which includes first circuitry. Memory decks are over the base. Each of the memory decks has a sense/access line coupled with the first circuitry. The memory decks and base are vertically spaced from one another by gaps. The gaps alternate in a vertical direction between first gaps and second gaps. Overlapping conductive paths extend from the sense/access lines to the first circuitry. The conductive paths include first conductive interconnects within the first gaps and second conductive interconnects within the second gaps. The first and second conductive interconnects are laterally offset relative to one another.Type: ApplicationFiled: May 1, 2024Publication date: August 22, 2024Applicant: Micron Technology, Inc.Inventors: Raju Ahmed, Radhakrishna Kotti, David A. Kewley, Dave Pratt
-
Publication number: 20240258167Abstract: Methods of manufacturing semiconductor devices, and associated systems and devices, are disclosed herein. In some embodiments, a method of manufacturing a semiconductor device includes forming an opening in an electrically insulative material at least partially over a first electrically conductive feature and a second electrically conductive feature. The method can further include forming a ring of electrically conductive material around a sidewall of the insulative material defining the opening, wherein the ring of electrically conductive material includes (a) a first via portion over the first electrically conductive feature, (b) a second via portion over the second electrically conductive feature, and (c) connecting portions extending between the first and second via portions. Finally, the method can include removing the connecting portions of the ring of electrically conductive material to electrically isolate the first via portion from the second via portion.Type: ApplicationFiled: April 12, 2024Publication date: August 1, 2024Inventors: Trupti D. Gawai, David S. Pratt, Ahmed M. Elsied, David A. Kewley, Dale W. Collins, Raju Ahmed, Chelsea M. Jordan, Radhakrishna Kotti
-
Patent number: 12014983Abstract: Some embodiments include an integrated assembly having a base which includes first circuitry. Memory decks are over the base. Each of the memory decks has a sense/access line coupled with the first circuitry. The memory decks and base are vertically spaced from one another by gaps. The gaps alternate in a vertical direction between first gaps and second gaps. Overlapping conductive paths extend from the sense/access lines to the first circuitry. The conductive paths include first conductive interconnects within the first gaps and second conductive interconnects within the second gaps. The first and second conductive interconnects are laterally offset relative to one another.Type: GrantFiled: September 16, 2022Date of Patent: June 18, 2024Assignee: Micron Technology, Inc.Inventors: Raju Ahmed, Radhakrishna Kotti, David A. Kewley, Dave Pratt
-
Patent number: 11996336Abstract: Methods, systems, and devices for electron beam probing techniques and related structures are described to enable inline testing of memory device structures. Conductive loops may be formed, some of which may be grounded and others of which may be electrically floating in accordance with a predetermined pattern. The loops may be scanned with an electron beam and image analysis techniques may be used to generate an optical pattern. The generated optical pattern may be compared to an expected optical pattern, which may be based on the predetermined pattern of grounded and floating loops. An electrical defect may be determined based on any difference between the generated optical pattern and the expected optical pattern. For example, if a second loop appears as having a brightness corresponding to a grounded loop, this may indicate that an unintended short exists. Fabrication techniques may be adjusted for subsequent devices to correct identified defects.Type: GrantFiled: April 6, 2022Date of Patent: May 28, 2024Assignee: Micron Technology, Inc.Inventors: Amitava Majumdar, Radhakrishna Kotti, Mallesh Rajashekharaiah
-
Patent number: 11990370Abstract: Methods of manufacturing semiconductor devices, and associated systems and devices, are disclosed herein. In some embodiments, a method of manufacturing a semiconductor device includes forming an opening in an electrically insulative material at least partially over a first electrically conductive feature and a second electrically conductive feature. The method can further include forming a ring of electrically conductive material around a sidewall of the insulative material defining the opening, wherein the ring of electrically conductive material includes (a) a first via portion over the first electrically conductive feature, (b) a second via portion over the second electrically conductive feature, and (c) connecting portions extending between the first and second via portions. Finally, the method can include removing the connecting portions of the ring of electrically conductive material to electrically isolate the first via portion from the second via portion.Type: GrantFiled: October 21, 2022Date of Patent: May 21, 2024Assignee: Micron Technology, Inc.Inventors: Trupti D. Gawai, David S. Pratt, Ahmed M. Elsied, David A. Kewley, Dale W. Collins, Raju Ahmed, Chelsea M. Jordan, Radhakrishna Kotti
-
Patent number: 11961556Abstract: Methods, systems, and devices supporting a socket design for a memory device are described. A die may include one or more memory arrays, which each may include any number of word lines and any number of bit lines. The word lines and the bit lines may be oriented in different directions, and memory cells may be located at the intersections of word lines and bit lines. Sockets may couple the word lines and bit lines to associated drivers, and the sockets may be located such that memory cells farther from a corresponding word line socket are nearer a corresponding bit line socket, and vice versa. For example, sockets may be disposed in rows or regions that are parallel to one another, and which may be non-orthogonal to the corresponding word lines and bit lines.Type: GrantFiled: January 4, 2022Date of Patent: April 16, 2024Assignee: Micron Technology, Inc.Inventors: Amitava Majumdar, Radhakrishna Kotti, Rajasekhar Venigalla
-
Publication number: 20230298951Abstract: Test structures for wafers are disclosed. A device may include a silicon wafer including a number of die and a scribe area between two die of the number of die. The scribe area may include one or more test structures. The test structures may include a p-doped region and an n-doped region adjacent to the p-doped region. The test structures may also include a first contact electrically coupled to the p-doped region and a second contact electrically coupled to the n-doped region. The second contact may be proximate to the first contact. Associated devices, systems, and methods are also disclosed.Type: ApplicationFiled: March 16, 2022Publication date: September 21, 2023Inventors: Chase M. Hunter, Marlon W. Hug, Stephen W. Russell, Rajesh Kamana, Amitava Majumdar, Radhakrishna Kotti, Ahmed N. Noemaun, Tejaswi K. Indukuri
-
Publication number: 20230290684Abstract: Structures and methods for separating semiconductor wafers into individual dies are disclosed. A semiconductor wafer or panel can include a crack assist structure in a scribe junction. The crack assist structure can include a plurality of vertical walls extending at least partially through a thickness of the wafer. In some embodiments, the plurality of vertical walls can be coupled to a weak interface. The weak interface can guide cracks that form during the dicing process in a direction along the walls, away from active circuitry. After dicing, the resulting semiconductor devices can include a plurality of vertical walls extending at least partially through a thickness of the semiconductor device. Each of the plurality of vertical walls can include at least a portion extending substantially parallel to a sidewall of the semiconductor device.Type: ApplicationFiled: March 9, 2022Publication date: September 14, 2023Inventors: Wei Chang Wong, Radhakrishna Kotti, Raj K. Bansal, Youngik Kwon, Po Chih Yang, Venkateswarlu Bhavanasi
-
Patent number: 11636911Abstract: Methods, systems, and devices for leakage source detection are described. In some cases, a testing device may scan a first set of access lines of a memory die that have a first length and a second set of access lines of the memory die that have a second length different than the first length. The testing device may determine a first error rate associated with the first set of access lines and a second error rate associated with the second set of access lines. The testing device may categorize a performance of the memory die based on the first and second error rates. In some cases, the testing device may determine a third error rate associated with a type of error based on the first and second error rates and may categorize the performance of the memory die based on the third error rate.Type: GrantFiled: July 28, 2021Date of Patent: April 25, 2023Assignee: Micron Technology, Inc.Inventors: Amitava Majumdar, Radhakrishna Kotti, Patrick Daniel White, Pavan Reddy K Aella, Rajesh Kamana
-
Publication number: 20230113573Abstract: Methods of manufacturing semiconductor devices, and associated systems and devices, are disclosed herein. In some embodiments, a method of manufacturing a semiconductor device includes forming an opening in an electrically insulative material at least partially over a first electrically conductive feature and a second electrically conductive feature. The method can further include forming a ring of electrically conductive material around a sidewall of the insulative material defining the opening, wherein the ring of electrically conductive material includes (a) a first via portion over the first electrically conductive feature, (b) a second via portion over the second electrically conductive feature, and (c) connecting portions extending between the first and second via portions. Finally, the method can include removing the connecting portions of the ring of electrically conductive material to electrically isolate the first via portion from the second via portion.Type: ApplicationFiled: October 21, 2022Publication date: April 13, 2023Inventors: Trupti D. Gawai, David S. Pratt, Ahmed M. Elsied, David A. Kewley, Dale W. Collins, Raju Ahmed, Chelsea M. Jordan, Radhakrishna Kotti
-
Patent number: 11574842Abstract: Methods of manufacturing semiconductor devices, and associated systems and devices, are disclosed herein. In some embodiments, a method of manufacturing a semiconductor device includes forming an opening in an insulative material at least partially over an electrically conductive feature. The method can further include forming a ring of electrically non-conductive material extending at least partially about a sidewall of the insulative material that defines the opening. The method can further include removing a portion of the ring to form an opening over the electrically conductive feature, and then depositing an electrically conductive material into the opening in the ring to form a conductive via electrically coupled to the electrically conductive feature.Type: GrantFiled: April 14, 2021Date of Patent: February 7, 2023Assignee: Micron Technology, Inc.Inventors: Trupti D. Gawai, David A. Kewley, Aaron M. Lowe, Radhakrishna Kotti, David S. Pratt
-
Publication number: 20230021072Abstract: Some embodiments include an integrated assembly having a base which includes first circuitry. Memory decks are over the base. Each of the memory decks has a sense/access line coupled with the first circuitry. The memory decks and base are vertically spaced from one another by gaps. The gaps alternate in a vertical direction between first gaps and second gaps. Overlapping conductive paths extend from the sense/access lines to the first circuitry. The conductive paths include first conductive interconnects within the first gaps and second conductive interconnects within the second gaps. The first and second conductive interconnects are laterally offset relative to one another.Type: ApplicationFiled: September 16, 2022Publication date: January 19, 2023Applicant: Micron Technology, Inc.Inventors: Raju Ahmed, Radhakrishna Kotti, David A. Kewley, Dave Pratt
-
Patent number: 11515204Abstract: Methods of manufacturing semiconductor devices, and associated systems and devices, are disclosed herein. In some embodiments, a method of manufacturing a semiconductor device includes forming an opening in an electrically insulative material at least partially over a first electrically conductive feature and a second electrically conductive feature. The method can further include forming a ring of electrically conductive material around a sidewall of the insulative material defining the opening, wherein the ring of electrically conductive material includes (a) a first via portion over the first electrically conductive feature, (b) a second via portion over the second electrically conductive feature, and (c) connecting portions extending between the first and second via portions. Finally, the method can include removing the connecting portions of the ring of electrically conductive material to electrically isolate the first via portion from the second via portion.Type: GrantFiled: December 29, 2020Date of Patent: November 29, 2022Assignee: Micron Technology, Inc.Inventors: Trupti D. Gawai, David S. Pratt, Ahmed M. Elsied, David A. Kewley, Dale W. Collins, Raju Ahmed, Chelsea M. Jordan, Radhakrishna Kotti
-
Patent number: 11482492Abstract: Some embodiments include an integrated assembly having a base which includes first circuitry. Memory decks are over the base. Each of the memory decks has a sense/access line coupled with the first circuitry. The memory decks and base are vertically spaced from one another by gaps. The gaps alternate in a vertical direction between first gaps and second gaps. Overlapping conductive paths extend from the sense/access lines to the first circuitry. The conductive paths include first conductive interconnects within the first gaps and second conductive interconnects within the second gaps. The first and second conductive interconnects are laterally offset relative to one another.Type: GrantFiled: July 10, 2020Date of Patent: October 25, 2022Assignee: Micron Technology, Inc.Inventors: Raju Ahmed, Radhakrishna Kotti, David A. Kewley, Dave Pratt
-
Publication number: 20220336277Abstract: Methods of manufacturing semiconductor devices, and associated systems and devices, are disclosed herein. In some embodiments, a method of manufacturing a semiconductor device includes forming an opening in an insulative material at least partially over an electrically conductive feature. The method can further include forming a ring of electrically non-conductive material extending at least partially about a sidewall of the insulative material that defines the opening. The method can further include removing a portion of the ring to form an opening over the electrically conductive feature, and then depositing an electrically conductive material into the opening in the ring to form a conductive via electrically coupled to the electrically conductive feature.Type: ApplicationFiled: April 14, 2021Publication date: October 20, 2022Inventors: Trupti D. Gawai, David A. Kewley, Aaron M. Lowe, Radhakrishna Kotti, David S. Pratt
-
Publication number: 20220301946Abstract: Methods, systems, and devices for electron beam probing techniques and related structures are described to enable inline testing of memory device structures. Conductive loops may be formed, some of which may be grounded and others of which may be electrically floating in accordance with a predetermined pattern. The loops may be scanned with an electron beam and image analysis techniques may be used to generate an optical pattern. The generated optical pattern may be compared to an expected optical pattern, which may be based on the predetermined pattern of grounded and floating loops. An electrical defect may be determined based on any difference between the generated optical pattern and the expected optical pattern. For example, if a second loop appears as having a brightness corresponding to a grounded loop, this may indicate that an unintended short exists. Fabrication techniques may be adjusted for subsequent devices to correct identified defects.Type: ApplicationFiled: April 6, 2022Publication date: September 22, 2022Inventors: Amitava Majumdar, Radhakrishna Kotti, Mallesh Rajashekharaiah
-
Publication number: 20220208606Abstract: Methods of manufacturing semiconductor devices, and associated systems and devices, are disclosed herein. In some embodiments, a method of manufacturing a semiconductor device includes forming an opening in an electrically insulative material at least partially over a first electrically conductive feature and a second electrically conductive feature. The method can further include forming a ring of electrically conductive material around a sidewall of the insulative material defining the opening, wherein the ring of electrically conductive material includes (a) a first via portion over the first electrically conductive feature, (b) a second via portion over the second electrically conductive feature, and (c) connecting portions extending between the first and second via portions. Finally, the method can include removing the connecting portions of the ring of electrically conductive material to electrically isolate the first via portion from the second via portion.Type: ApplicationFiled: December 29, 2020Publication date: June 30, 2022Inventors: Trupti D. Gawai, David S. Pratt, Ahmed M. Elsied, David A. Kewley, Dale W. Collins, Raju Ahmed, Chelsea M. Jordan, Radhakrishna Kotti
-
Publication number: 20220208264Abstract: Methods, systems, and devices supporting a socket design for a memory device are described. A die may include one or more memory arrays, which each may include any number of word lines and any number of bit lines. The word lines and the bit lines may be oriented in different directions, and memory cells may be located at the intersections of word lines and bit lines. Sockets may couple the word lines and bit lines to associated drivers, and the sockets may be located such that memory cells farther from a corresponding word line socket are nearer a corresponding bit line socket, and vice versa. For example, sockets may be disposed in rows or regions that are parallel to one another, and which may be non-orthogonal to the corresponding word lines and bit lines.Type: ApplicationFiled: January 4, 2022Publication date: June 30, 2022Inventors: Amitava Majumdar, Radhakrishna Kotti, Rajasekhar Venigalla