Patents by Inventor Radhakrishnan L. Nagarajan

Radhakrishnan L. Nagarajan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240089002
    Abstract: An integrated circuit includes a silicon photonics substrate having a silicon-based material, silicon photonics components formed in the silicon photonics substrate to receive and transmit optical signals, and electrical connections; a transimpedance amplifier chip arranged on the silicon photonics substrate, having a silicon-germanium material that is different than the silicon-based material, connected via the electrical connections to at least one of the silicon photonics components configured to receive an optical signal, and configured to process a received optical signal and output a processed signal to a digital signal processor; and a driver chip arranged on the silicon photonics substrate, having CMOS material that is different than the silicon-germanium material and the silicon-based material, connected via the electrical connections to drive at least one of the silicon photonics components configured to generate an optical signal for transmission.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 14, 2024
    Inventor: Radhakrishnan L. NAGARAJAN
  • Patent number: 11929592
    Abstract: A semiconductor optical amplifier for high-power operation includes a gain medium having a multilayer structure sequentially laid with a P-layer, an active layer, a N-layer from an upper portion to a lower portion in cross-section thereof. The gain medium is extendedly laid with a length L from a front facet to a back facet. The active layer includes multiple well layers formed by undoped semiconductor material and multiple barrier layers formed by n-doped semiconductor materials. Each well layer is sandwiched by a pair of barrier layers. The front facet is characterized by a first reflectance Rf and the back facet is characterized by a second reflectance Rb. The gain medium has a mirror loss ?m about 40-200 cm?1 given by: ?m=(½L)ln{1/(Rf×Rb)}.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: March 12, 2024
    Assignee: Marvell Asia Pte Ltd.
    Inventors: Xiaoguang He, Radhakrishnan L. Nagarajan
  • Patent number: 11914547
    Abstract: An optical module configured to control a peer to peer transaction includes a silicon photonics substrate, memory formed on the silicon photonics substrate and configured to store a private key, application circuitry formed on the silicon photonics substrate and coupled to the memory, the application circuitry configured to receive, via an external interface, an electrical signal carrying instructions for executing a transaction, verify the transaction using the private key stored in the memory, and selectively generate a transaction message including information for completing the transaction, and optical communication circuitry formed on the silicon photonics substrate and responsive to the application circuitry, the optical communication circuitry configured to generate an optical signal based on the transaction message and transmit the optical signal to at least one remote entity.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: February 27, 2024
    Assignee: MARVELL ASIA PTE LTD
    Inventor: Radhakrishnan L. Nagarajan
  • Publication number: 20240063602
    Abstract: A laser device based on silicon photonics with in-cavity power monitor includes a gain chip, a reflector, and a photodiode. The gain chip is mounted on a silicon photonics substrate and is configured to emit light from an active region bounded between a frontend facet and a backend facet. The reflector is configured to reflect the light in a cavity formed between the reflector and the frontend facet through which a laser light is output. The photodiode is coupled to one or more waveguides in the cavity by a splitter disposed directly in an optical path between the reflector and a component positioned in the cavity. The photodiode is configured to measure power of light propagating through the cavity between the reflector and the component.
    Type: Application
    Filed: October 27, 2023
    Publication date: February 22, 2024
    Inventors: Xiaoguang HE, Radhakrishnan L. NAGARAJAN
  • Patent number: 11888286
    Abstract: A laser chip for flip-chip bonding on a silicon photonics chip with passive alignment features. The laser chip includes a chip body made of a p-region and a n-region in vertical direction and extended from a front facet to a rear facet in longitudinal direction, a pair of first vertical stoppers formed respectively beyond two sides of the chip body based on a wider width of the n-region, an active region buried in the chip body between the p-region and the n-region in the vertical direction and extended from the front facet to the rear facet in the longitudinal direction, an alignment mark formed on a top surface of the p-region near the front facet with a lateral distance defined in sub-micron precision relative to the active region; and a thin metal film on the surface of the p-region having a cleaved edge shared with the front facet.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: January 30, 2024
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Xiaoguang He, Radhakrishnan L. Nagarajan
  • Publication number: 20230400651
    Abstract: An assembled electro-optical switch module includes a package substrate. Four optical socket members are disposed respectively to the package substrate. Each optical socket member includes four sockets closely packed in a row. Each socket has a recessed flat region with topside land grid array (LGA) interposer connected to bottom side solder bumps and a side notch opening aligned to an edge of the package substrate at the corresponding edge region. Sixteen optical modules in four sets are co-packaged in the package substrate. Each set has four optical modules respectively seated in the four sockets of each optical socket member with top side LGA interposer. Four clamp latch members are applied to clamp each of the four sets of optical modules in respective optical socket members. A data processor device with 51.2 Tbps data interface is disposed to the package substrate and electrically coupled to each of the sixteen optical module.
    Type: Application
    Filed: July 27, 2023
    Publication date: December 14, 2023
    Inventors: Radhakrishnan L. NAGARAJAN, Mark PATTERSON
  • Patent number: 11828995
    Abstract: A silicon-based edge coupler for coupling a fiber with a waveguide includes a cantilever member being partially suspended with its anchored end coupled to a silicon photonics die in a first part of a silicon substrate and a free end terminated near an edge region separating a second part of the silicon substrate from the first part. The edge coupler further includes a mechanical stopper formed at the edge region with a gap distance ahead of the free end of the cantilever member. Additionally, a V-groove is formed in the second part of the silicon substrate characterized by a top opening and a bottom plane symmetrically connected by two sloped side walls along a fixed Si-crystallography angle. The V-groove is configured to support a fiber with an end facet being pushed against the mechanical stopper and a core center being aligned with the free end of the cantilever member.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: November 28, 2023
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Radhakrishnan L Nagarajan, Masaki Kato
  • Patent number: 11817676
    Abstract: A packaged transmitter device includes a base member comprising a planar part mounted with a thermoelectric cooler, a transmitter, and a coupling lens assembly, and an assembling part connected to one side of the planar part. The device further includes a circuit board bended to have a first end region and a second end region being raised to a higher level. The first end region disposed on a top surface of the planar part includes multiple electrical connection patches respectively connected to the thermoelectric and the transmitter. The second end region includes an electrical port for external connection. Additionally, the device includes a cover member disposed over the planar part. Furthermore, the device includes a cylindrical member installed to the assembling part for enclosing an isolator aligned to the coupling lens assembly along its axis and connected to a fiber to couple optical signal from the transmitter to the fiber.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: November 14, 2023
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Radhakrishnan L. Nagarajan, Peng-Chih Li, Pi-Cheng Law
  • Patent number: 11809003
    Abstract: An apparatus for dissipating heat from a photonic transceiver module. The apparatus includes a top-plate member disposed in a length direction of a package for the photonic transceiver module. The apparatus further includes multiple fins formed on the top-plate member along the length direction from a backend position to a frontend position except at least one fin with a shorter length, forming an elongated void from the backend position to one backend of the at least one fin. Additionally, the apparatus includes a cover member disposed over the multiple fins with a horizontal sheet, two vertical side sheets, and a flange bent vertically from a middle portion of backend of the horizontal sheet. Furthermore, the apparatus includes a spring loaded in the elongated void between the flange and the one backend of the at least one fin to minimize an air gap at the backend of the horizontal sheet.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: November 7, 2023
    Assignee: Marvell Asia Pte Ltd.
    Inventors: Chris Togami, Radhakrishnan L. Nagarajan, Gary Sasser, Brian Taylor
  • Patent number: 11811433
    Abstract: A silicon photonics substrate for a transceiver includes a substrate member comprised of a first silicon material, and, heterogeneously formed on the substrate member, receiver circuitry and transmitter circuitry. The receiver circuitry is comprised of a second silicon material and is configured to receive a coherent input signal, generate first and second oscillator signals based on light input from a laser diode, and detect a transverse electric (TE) mode signal and a transverse magnetic (TM) mode signal in the coherent input signal based on the first and second oscillator signals. The transmitter circuitry is comprised of the second or a third silicon material and is configured to transmit signals having the two or more possible modulation formats and modulate the light input from the laser diode in either a TE mode or a TM mode to generate a coherent output signal.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: November 7, 2023
    Assignee: MARVELL ASIA PTE LTD
    Inventor: Radhakrishnan L. Nagarajan
  • Patent number: 11804692
    Abstract: A laser device based on silicon photonics with an in-cavity power monitor includes a gain chip mounted on a silicon photonics substrate and configured to emit light in an active region bounded between a frontend facet with low reflectivity and a backend facet with anti-reflective characteristics. The laser device further includes a wavelength tuner formed with waveguides in the silicon photonics substrate optically coupled to the backend facet to receive light from the gain chip and configured to have a reflector with high reflectivity to reflect the light in an extended cavity formed with the frontend facet through which a laser with a tuned wavelength and amplified power is outputted. Additionally, the laser device includes a photodiode formed in the silicon photonics substrate and coupled to the waveguides in the extended cavity right in front of the reflector to measure power of light thereof.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: October 31, 2023
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Xiaoguang He, Radhakrishnan L. Nagarajan
  • Patent number: 11791899
    Abstract: An optical transceiver includes a silicon photonics substrate, transmitter circuitry, and receiver circuitry that are heterogeneously integrated. The transmitter circuitry includes a plurality of laser devices formed on the silicon photonics substrate, each of the plurality of laser devices configured to generate a respective laser light, a plurality of modulators formed on the silicon photonics substrate, each of the plurality of modulators configured to modulate the laser lights based on driver signals and output, from the silicon photonics substrate, the modulated laser lights, and a driver formed on the silicon photonics substrate and configured to generate the driver signals.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: October 17, 2023
    Assignee: Marvell Asia Pte Ltd.
    Inventors: Ding Liang, Mark Patterson, Roberto Coccioli, Radhakrishnan L. Nagarajan
  • Patent number: 11784463
    Abstract: A tunable laser for a transceiver includes a silicon photonics substrate, first and second patterned regions each being defined in the substrate a step lower than a flat surface region of the substrate, first and second laser diode chips arranged in the first and second patterned regions, the patterned regions being configured to align the gain regions of the first and second laser diode chips with integrated couplers formed in the substrate adjacent to the first and second patterned regions to facilitate flip-bonding the first and second laser diode chips within the patterned regions, and a tuning filter coupled to the first laser diode chip and the second laser diode chip via the integrated couplers. The tuning filter is configured to receive laser light from each of the first and second laser diode chips and generate a laser output having a gain determined by each of the gain regions.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: October 10, 2023
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Radhakrishnan L. Nagarajan, Masaki Kato, Nourhan Eid, Kenneth Ling Wong
  • Patent number: 11777631
    Abstract: An in-packaged multi-channel light engine is packaged for four or more sub-assemblies of optical-electrical sub-modules. Each is assembled with at least four laser chips, one or more driver chip, and one or more trans-impedance amplifier (TIA) chip separately flip-mounted on a silicon photonics interposer and is coupled to an optical interface block and an electrical interface block on a sub-module substrate. The in-packaged multi-channel light engine further includes a first frame fixture holding the four or more sub-assemblies and a second frame fixture configured to hold the first frame fixture with the four or more sub-assemblies. The in-packaged multi-channel light engine further includes an interposer plate inserted between the sub-module substrates and a module substrate and is compressed between a backplate member attached to a bottom side of the module substrate and a top plate member configured as a heatsink with a plurality of fin structures.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: October 3, 2023
    Assignee: MARVELL ASIA PTE LTD.
    Inventors: Radhakrishnan L. Nagarajan, Liang Ding, Mark Patterson, Roberto Coccioli
  • Publication number: 20230299008
    Abstract: A method for forming a silicon photonics interposer having through-silicon vias (TSVs). The method includes forming vias in a front side of a silicon substrate and defining primary structures for forming optical devices in the front side. Additionally, the method includes bonding a first handle wafer to the front side and thinning down the silicon substrate from the back side and forming bumps at the back side to couple with a conductive material in the vias. Furthermore, the method includes bonding a second handle wafer to the back side and debonding the first handle wafer from the front side to form secondary structures based on the primary structures. Moreover, the method includes forming pads at the front side to couple with the bumps at the back side before completing final structures based on the secondary structures and debonding the second handle wafer from the back side.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 21, 2023
    Inventors: Liang DING, Radhakrishnan L. NAGARAJAN
  • Patent number: 11736596
    Abstract: An optical module includes first circuitry configured to receive data transmitted from a host over an electrical communication link at a first data rate, the data transmitted from the host being either one of PCIe data and CXL data and change a data rate for transmission of data from the optical module, the data transmitted from the optical module being transmitted at a second data rate different from the first data rate. Second circuitry is configured to convert the data transmitted from the host at the first data rate from an electrical format to an optical format for transmission from the optical module at the second data rate and convert data received from an optical receiver at the second data rate from the optical format to the electrical format for transmission from the optical module to the host at the first data rate via the first circuitry.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: August 22, 2023
    Assignee: Marvell Asia Pte Ltd.
    Inventors: Kumaran David Siva, Arash Farhoodfar, Radhakrishnan L. Nagarajan
  • Patent number: 11728619
    Abstract: A method for improving wide-band wavelength-tunable laser. The method includes configuring a gain region between a first facet and a second facet and crosswise a PN-junction with an active layer between P-type cladding layer and N-type cladding layer. The method further includes coupling a light excited in the active layer and partially reflected from the second facet to pass through the first facet to a wavelength tuner configured to generate a joint interference spectrum with multiple modes separated by a joint-free-spectral-range (JFSR). Additionally, the method includes configuring the second facet to have reduced reflectivity for increasing wavelengths. Furthermore, the method includes reconfiguring the gain chip with an absorption layer near the active layer to induce a gain loss for wavelengths shorter than a longest wavelength associated with a short-wavelength side mode. Moreover, the method includes outputting amplified light at a basic mode via the second facet.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: August 15, 2023
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Xiaoguang He, Radhakrishnan L. Nagarajan
  • Patent number: 11728614
    Abstract: A photonics device includes a silicon wafer including a cathode region, an anode region, a trench region formed between the cathode region and the anode region, and a linear ridge formed between the cathode region and the anode region. A laser diode chip is mounted on the silicon wafer. A conductor layer disposed between the silicon wafer and the laser diode chip includes a first section disposed between the laser diode chip and the cathode region on a first side of the trench to electrically connect the laser diode chip to a cathode electrode of the photonics device and a second section disposed between the anode region and the laser diode chip on a second side of the trench to electrically connect the laser diode chip to an anode electrode of the photonics device.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: August 15, 2023
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Xiaoguang He, Radhakrishnan L. Nagarajan
  • Publication number: 20230251992
    Abstract: A hybrid electrical and optic system-on-chip (SOC) device configured for both electrical and optic communication includes a substrate, an electrical device configured for electrical communication arranged on the substrate, a photonics device configured for optic communication arranged on the substrate, and a self-test module arranged on the substrate. The self-test module is configured to receive a loop-back signal indicative of an optical signal output from the photonics device and calibrate the photonics device based on the loop-back signal.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 10, 2023
    Inventors: Radhakrishnan L. NAGARAJAN, Chao XU
  • Patent number: 11719898
    Abstract: An assembled electro-optical switch module includes a package substrate. Four optical socket members are disposed respectively to the package substrate. Each optical socket member includes four sockets closely packed in a row. Each socket has a recessed flat region with topside land grid array (LGA) interposer connected to bottom side solder bumps and a side notch opening aligned to an edge of the package substrate at the corresponding edge region. Sixteen optical modules in four sets are co-packaged in the package substrate. Each set has four optical modules respectively seated in the four sockets of each optical socket member with top side LGA interposer. Four clamp latch members are applied to clamp each of the four sets of optical modules in respective optical socket members. A data processor device with 51.2 Tbps data interface is disposed to the package substrate and electrically coupled to each of the sixteen optical modules.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: August 8, 2023
    Assignee: Marvell Asia Pte Ltd.
    Inventors: Radhakrishnan L. Nagarajan, Mark Patterson