Patents by Inventor Radoje Drmanac

Radoje Drmanac has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140024544
    Abstract: The invention relates to methods and devices for analyzing single molecules, i.e., nucleic acids. Such single molecules may be derived from natural samples, such as cells, tissues, soil, air, and water without separating or enriching individual components. In certain aspects of the invention, the methods and devices are useful in performing nucleic acid sequence analysis by probe hybridization.
    Type: Application
    Filed: October 1, 2012
    Publication date: January 23, 2014
    Inventor: Radoje Drmanac
  • Publication number: 20140018246
    Abstract: The invention provides methods and kits for ordering sequence information derived from one or more target polynucleotides. In one aspect, one or more tiers or levels of fragmentation and aliquoting are generated, after which sequence information is obtained from fragments in a final level or tier. Each fragment in such final tier is from a particular aliquot, which, in turn, is from a particular aliquot of a prior tier, and so on. For every fragment of an aliquot in the final tier, the aliquots from which it was derived at every prior tier is known, or can be discerned. Thus, identical sequences from overlapping fragments from different aliquots can be distinguished and grouped as being derived from the same or different fragments from prior tiers. When the fragments in the final tier are sequenced, overlapping sequence regions of fragments in different aliquots are used to register the fragments so that non-overlapping regions are ordered.
    Type: Application
    Filed: August 20, 2013
    Publication date: January 16, 2014
    Applicant: Callida Genomics, Inc.
    Inventor: Radoje Drmanac
  • Publication number: 20140011688
    Abstract: The invention provides methods and kits for ordering sequence information derived from one or more target polynucleotides. In one aspect, one or more tiers or levels of fragmentation and aliquoting are generated, after which sequence information is obtained from fragments in a final level or tier. Each fragment in such final tier is from a particular aliquot, which, in turn, is from a particular aliquot of a prior tier, and so on. For every fragment of an aliquot in the final tier, the aliquots from which it was derived at every prior tier is known, or can be discerned. Thus, identical sequences from overlapping fragments from different aliquots can be distinguished and grouped as being derived from the same or different fragments from prior tiers. When the fragments in the final tier are sequenced, overlapping sequence regions of fragments in different aliquots are used to register the fragments so that non-overlapping regions are ordered.
    Type: Application
    Filed: August 20, 2013
    Publication date: January 9, 2014
    Applicant: Callida Genomics, Inc.
    Inventor: Radoje Drmanac
  • Publication number: 20140005056
    Abstract: The present invention is directed to methods and compositions for long fragment read sequencing. The present invention encompasses methods and compositions for preparing long fragments of genomic DNA, for processing genomic DNA for long fragment read sequencing methods, as well as software and algorithms for processing and analyzing sequence data.
    Type: Application
    Filed: September 16, 2013
    Publication date: January 2, 2014
    Applicant: Complete Genomics, Inc.
    Inventors: Radoje Drmanac, Brock A. Peters, Andrei Alexeev, Peter Hong
  • Patent number: 8617811
    Abstract: The present invention is directed to methods and compositions for acquiring nucleotide sequence information of target sequences. In particular, the present invention provides methods and compositions for improving the efficiency of sequencing reactions by using fewer labels to distinguish between nucleotides and by detecting nucleotides at multiple detection positions in a target sequence.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: December 31, 2013
    Assignee: Complete Genomics, Inc.
    Inventor: Radoje Drmanac
  • Publication number: 20130345070
    Abstract: The invention provides methods and kits for ordering sequence information derived from one or more target polynucleotides. In one aspect, one or more tiers or levels of fragmentation and aliquoting are generated, after which sequence information is obtained from fragments in a final level or tier. Each fragment in such final tier is from a particular aliquot, which, in turn, is from a particular aliquot of a prior tier, and so on. For every fragment of an aliquot in the final tier, the aliquots from which it was derived at every prior tier is known, or can be discerned. Thus, identical sequences from overlapping fragments from different aliquots can be distinguished and grouped as being derived from the same or different fragments from prior tiers. When the fragments in the final tier are sequenced, overlapping sequence regions of fragments in different aliquots are used to register the fragments so that non-overlapping regions are ordered.
    Type: Application
    Filed: August 23, 2013
    Publication date: December 26, 2013
    Applicant: Callida Genomics, Inc.
    Inventor: Radoje Drmanac
  • Publication number: 20130345071
    Abstract: The invention provides methods and kits for ordering sequence information derived from one or more target polynucleotides. In one aspect, one or more tiers or levels of fragmentation and aliquoting are generated, after which sequence information is obtained from fragments in a final level or tier. Each fragment in such final tier is from a particular aliquot, which, in turn, is from a particular aliquot of a prior tier, and so on. For every fragment of an aliquot in the final tier, the aliquots from which it was derived at every prior tier is known, or can be discerned. Thus, identical sequences from overlapping fragments from different aliquots can be distinguished and grouped as being derived from the same or different fragments from prior tiers. When the fragments in the final tier are sequenced, overlapping sequence regions of fragments in different aliquots are used to register the fragments so that non-overlapping regions are ordered.
    Type: Application
    Filed: August 23, 2013
    Publication date: December 26, 2013
    Applicant: Callida Genomics, Inc.
    Inventor: Radoje Drmanac
  • Publication number: 20130345069
    Abstract: The invention provides methods and kits for ordering sequence information derived from one or more target polynucleotides. In one aspect, one or more tiers or levels of fragmentation and aliquoting are generated, after which sequence information is obtained from fragments in a final level or tier. Each fragment in such final tier is from a particular aliquot, which, in turn, is from a particular aliquot of a prior tier, and so on. For every fragment of an aliquot in the final tier, the aliquots from which it was derived at every prior tier is known, or can be discerned. Thus, identical sequences from overlapping fragments from different aliquots can be distinguished and grouped as being derived from the same or different fragments from prior tiers. When the fragments in the final tier are sequenced, overlapping sequence regions of fragments in different aliquots are used to register the fragments so that non-overlapping regions are ordered.
    Type: Application
    Filed: August 23, 2013
    Publication date: December 26, 2013
    Applicant: Callida Genomics, Inc.
    Inventor: Radoje Drmanac
  • Publication number: 20130345068
    Abstract: The invention provides methods and kits for ordering sequence information derived from one or more target polynucleotides. In one aspect, one or more tiers or levels of fragmentation and aliquoting are generated, after which sequence information is obtained from fragments in a final level or tier. Each fragment in such final tier is from a particular aliquot, which, in turn, is from a particular aliquot of a prior tier, and so on. For every fragment of an aliquot in the final tier, the aliquots from which it was derived at every prior tier is known, or can be discerned. Thus, identical sequences from overlapping fragments from different aliquots can be distinguished and grouped as being derived from the same or different fragments from prior tiers. When the fragments in the final tier are sequenced, overlapping sequence regions of fragments in different aliquots are used to register the fragments so that non-overlapping regions are ordered.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 26, 2013
    Applicant: Callida Genomics, Inc.
    Inventor: Radoje Drmanac
  • Patent number: 8609335
    Abstract: The present invention provides methods of making and using self-assembled arrays of single polynucleotide molecules for carrying out a variety of large-scale genetic measurements, such as gene expression analysis, gene copy number assessment, and the like. Random arrays used in the invention are “self-assembled” in the sense that they are formed by deposition of polynucleotide molecules onto a surface where they become fixed at random locations. The polynucleotide molecules fixed on the surface are then identified by direct sequence determination of component nucleic acids, such as incorporated probe sequences, or by other decoding schemes. Such identification converts a random array of determinable polynucleotides, and their respective probes into an addressable array of probe sequences.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: December 17, 2013
    Assignee: Callida Genomics, Inc.
    Inventors: Radoje Drmanac, Matthew J. Callow, Brian K. Hauser, George Yeung
  • Publication number: 20130316920
    Abstract: The invention provides methods and kits for ordering sequence information derived from one or more target polynucleotides. In one aspect, one or more tiers or levels of fragmentation and aliquoting are generated, after which sequence information is obtained from fragments in a final level or tier. Each fragment in such final tier is from a particular aliquot, which, in turn, is from a particular aliquot of a prior tier, and so on. For every fragment of an aliquot in the final tier, the aliquots from which it was derived at every prior tier is known, or can be discerned. Thus, identical sequences from overlapping fragments from different aliquots can be distinguished and grouped as being derived from the same or different fragments from prior tiers. When the fragments in the final tier are sequenced, overlapping sequence regions of fragments in different aliquots are used to register the fragments so that non-overlapping regions are ordered.
    Type: Application
    Filed: August 8, 2013
    Publication date: November 28, 2013
    Applicant: Callida Genomics, Inc.
    Inventor: Radoje Drmanac
  • Patent number: 8592150
    Abstract: The present invention is directed to methods and compositions for long fragment read sequencing. The present invention encompasses methods and compositions for preparing long fragments of genomic DNA, for processing genomic DNA for long fragment read sequencing methods, as well as software and algorithms for processing and analyzing sequence data.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: November 26, 2013
    Assignee: Complete Genomics, Inc.
    Inventors: Radoje Drmanac, Brock A. Peters, Andrei Alexeev, Peter Hong
  • Publication number: 20130310264
    Abstract: The invention provides methods and kits for ordering sequence information derived from one or more target polynucleotides. In one aspect, one or more tiers or levels of fragmentation and aliquoting are generated, after which sequence information is obtained from fragments in a final level or tier. Each fragment in such final tier is from a particular aliquot, which, in turn, is from a particular aliquot of a prior tier, and so on. For every fragment of an aliquot in the final tier, the aliquots from which it was derived at every prior tier is known, or can be discerned. Thus, identical sequences from overlapping fragments from different aliquots can be distinguished and grouped as being derived from the same or different fragments from prior tiers. When the fragments in the final tier are sequenced, overlapping sequence regions of fragments in different aliquots are used to register the fragments so that non-overlapping regions are ordered.
    Type: Application
    Filed: July 30, 2013
    Publication date: November 21, 2013
    Applicant: Callida Genomics, Inc.
    Inventor: Radoje Drmanac
  • Patent number: 8551702
    Abstract: The present invention is directed to compositions and methods for nucleic acid identification and detection. Compositions and methods of the present invention include extracting and fragmenting target nucleic acids from a sample, using the fragmented target nucleic acids to produce target nucleic acid templates and subjecting those target nucleic acid templates to amplification methods to form nucleic acid nanoballs. The invention also includes methods of detecting and identifying sequences using various sequencing applications, including sequencing by ligation methods.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: October 8, 2013
    Assignee: Complete Genomics, Inc.
    Inventors: Radoje Drmanac, Matthew Callow
  • Patent number: 8518640
    Abstract: The present invention is directed to compositions and methods for nucleic acid identification and detection. Compositions and methods of the present invention include extracting and fragmenting target nucleic acids from a sample, using the fragmented target nucleic acids to produce target nucleic acid templates and subjecting those target nucleic acid templates to amplification methods to form nucleic acid nanoballs. The invention also includes methods of detecting and identifying sequences using various sequencing applications, including sequencing by ligation methods.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: August 27, 2013
    Assignee: Complete Genomics, Inc.
    Inventors: Radoje Drmanac, Matthew Callow
  • Patent number: 8445197
    Abstract: Random arrays of single molecules are provided for carrying out large scale analyses, particularly of biomolecules, such as genomic DNA, cDNAs, proteins, and the like. In one aspect, arrays of the invention comprise concatemers of DNA fragments that are randomly disposed on a regular array of discrete spaced apart regions, such that substantially all such regions contain no more than a single concatemer. Preferably, such regions have areas substantially less than 1 ?m2 and have nearest neighbor distances that permit optical resolution of on the order of 109 single molecules per cm2. Many analytical chemistries can be applied to random arrays of the invention, including sequencing by hybridization chemistries, sequencing by synthesis chemistries, SNP detection chemistries, and the like, to greatly expand the scale and potential applications of such techniques.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 21, 2013
    Assignee: Callida Genomics, Inc.
    Inventors: Radoje Drmanac, Matthew J. Callow, Snezana Drmanac, Brian K. Hauser, George Yeung
  • Patent number: 8445194
    Abstract: Random arrays of single molecules are provided for carrying out large scale analyses, particularly of biomolecules, such as genomic DNA, cDNAs, proteins, and the like. In one aspect, arrays of the invention comprise concatemers of DNA fragments that are randomly disposed on a regular array of discrete spaced apart regions, such that substantially all such regions contain no more than a single concatemer. Preferably, such regions have areas substantially less than 1 ?m2 and have nearest neighbor distances that permit optical resolution of on the order of 109 single molecules per cm2. Many analytical chemistries can be applied to random arrays of the invention, including sequencing by hybridization chemistries, sequencing by synthesis chemistries, SNP detection chemistries, and the like, to greatly expand the scale and potential applications of such techniques.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: May 21, 2013
    Assignee: Callida Genomics, Inc.
    Inventors: Radoje Drmanac, Matthew J. Callow, Snezana Drmanac, Brian K. Hauser, George Yeung
  • Publication number: 20130124100
    Abstract: The present invention is directed to logic for analysis of nucleic acid sequence data that employs algorithms that lead to a substantial improvement in sequence accuracy and that can be used to phase sequence variations, e.g., in connection with the use of the long fragment read (LFR) process.
    Type: Application
    Filed: April 13, 2012
    Publication date: May 16, 2013
    Applicant: Complete Genomics, Inc.
    Inventors: Radoje Drmanac, Brock A. Peters, Bahram Ghaffarzadeh Kermani
  • Patent number: 8440397
    Abstract: The present invention is directed to methods and compositions for acquiring nucleotide sequence information of target sequences using adaptors interspersed in target polynucleotides. The sequence information can be new, e.g. sequencing unknown nucleic acids, re-sequencing, or genotyping. The invention preferably includes methods for inserting a plurality of adaptors at spaced locations within a target polynucleotide or a fragment of a polynucleotide. Such adaptors may serve as platforms for interrogating adjacent sequences using various sequencing chemistries, such as those that identify nucleotides by primer extension, probe ligation, and the like. Encompassed in the invention are methods and compositions for the insertion of known adaptor sequences into target sequences, such that there is an interruption of contiguous target sequence with the adaptors. By sequencing both “upstream” and “downstream” of the adaptors, identification of entire target sequences may be accomplished.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 14, 2013
    Assignee: Callida Genomics, Inc.
    Inventors: Radoje Drmanac, Matthew J. Callow, Snezana Drmanac
  • Patent number: 8415099
    Abstract: The present invention is directed to compositions and methods for nucleic acid identification and detection. Compositions and methods of the present invention include extracting and fragmenting target nucleic acids from a sample, using the fragmented target nucleic acids to produce target nucleic acid templates and subjecting those target nucleic acid templates to amplification methods to form nucleic acid nanoballs. The invention also includes methods of detecting and identifying sequences using various sequencing applications, including sequencing by ligation methods.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: April 9, 2013
    Assignee: Complete Genomics, Inc.
    Inventors: Radoje Drmanac, Matthew Callow