Patents by Inventor Radoje T. Drmanac

Radoje T. Drmanac has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6383742
    Abstract: The present invention provides a method for detecting a target nucleic acid species including the steps of providing an array of probes affixed to a substrate and a plurality of labeled probes wherein each labeled probe is selected to have a first nucleic acid sequence which is complementary to a first portion of a target nucleic acid and wherein the nucleic acid sequence of at least one probe affixed to the substrate is complementary to a second portion of the nucleic acid sequence of the target, the second portion being adjacent to the first portion; applying a target nucleic acid to the array under suitable conditions for hybridization of probe sequences to complementary sequences; introducing a labeled probe to the array; hybridizing a probe affixed to the substrate to the target nucleic acid; hybridizing the labeled probe to the target nucleic acid; affixing the labeled probe to an adjacently hybridized probe in the array; and detecting the labeled probe affixed to the probe in the array.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: May 7, 2002
    Inventors: Radoje T. Drmanac, Snezana Drmanac
  • Publication number: 20020009786
    Abstract: The present invention provides novel nucleic acids, novel polypeptide sequences encoded by these nucleic acids and uses thereof.
    Type: Application
    Filed: December 1, 2000
    Publication date: January 24, 2002
    Inventors: Y. Tom Tang, Ping Zhou, Ryle Goodrich, Chenghua Liu, Vinod Asundi, Aidong J. Xue, Jie Zhang, Qing A. Zhao, Feiyan Ren, Radoje T. Drmanac
  • Patent number: 6316191
    Abstract: The conditions under which oligonucleotide probes hybridize preferentially with entirely complementary and homologous nucleic acid targets are described. Using these hybridization conditions, overlapping oligonucleotide probes associate with a target nucleic acid. Following washes, positive hybridization signals are used to assemble the sequence of a given nucleic acid fragment. Representative target nucleic acids are applied as dots. Up to 100,000 probes of the type (A,T,C,G)(A,T,C,G)N8(A,T,C,G) are used to determine sequence information by simultaneous hybridization with nucleic acid molecules bound to a filter. Additional hybridization conditions are provided that allow stringent hybridization of 6-10 nucleotide long oligomers which extends the utility of the invention. A computer process determines the information sequence of the target nucleic acid which can include targets with the complexity of mammalian genomes.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: November 13, 2001
    Assignee: Hyseq, Inc.
    Inventors: Radoje T. Drmanac, Radomir B. Crkvenjakov
  • Patent number: 6309824
    Abstract: The present invention provides a method for detecting a target nucleic acid species including the steps of providing an array of probes affixed to a substrate and a plurality of labeled probes wherein each labeled probe is selected to have a first nucleic acid sequence which is complementary to a first portion of a target nucleic acid and wherein the nucleic acid sequence of at least one probe affixed to the substrate is complementary to a second portion of the nucleic acid sequence of the target, the second portion being adjacent to the first portion; applying a target nucleic acid to the array under suitable conditions for hybridization of probe sequences to complementary sequences; introducing a labeled probe to the array; hybridizing a probe affixed to the substrate to the target nucleic acid; hybridizing the labeled probe to the target nucleic acid; affixing the labeled probe to an adjacently hybridized probe in the array; and detecting the labeled probe affixed to the probe in the array.
    Type: Grant
    Filed: January 16, 1997
    Date of Patent: October 30, 2001
    Assignee: Hyseq, Inc.
    Inventor: Radoje T. Drmanac
  • Patent number: 6297006
    Abstract: The present invention provides a method for detecting a target nucleic acid species including the steps of providing an array of probes affixed to a substrate and a plurality of labeled probes wherein each labeled probe is selected to have a first nucleic acid sequence which is complementary to a first portion of a target nucleic acid and wherein the nucleic acid sequence of at least one probe affixed to the substrate is complementary to a second portion of the nucleic acid sequence of the target, the second portion being adjacent to the first portion; applying a target nucleic acid to the array under suitable conditions for hybridization of probe sequences to complementary sequences; introducing a labeled probe to the array; hybridizing a probe affixed to the substrate to the target nucleic acid; hybridizing the labeled probe to the target nucleic acid; affixing the labeled probe to an adjacently hybridized probe in the array; and detecting the labeled probe affixed to the probe in the array.
    Type: Grant
    Filed: March 4, 1997
    Date of Patent: October 2, 2001
    Assignee: Hyseq, Inc.
    Inventors: Radoje T. Drmanac, Snezana Drmanac, Aaron Hou, Brian Hauser
  • Patent number: 6268210
    Abstract: The present invention relates to spatially-addressable sandwich arrays of compounds, particularly biological compounds such as peptides and polynucleotide probes, and methods of making and using the same. The present invention also relates to a method and device for holding together the substrates of the sandwich array, more particularly, a clamping device for securely yet safely holding substrates of a sandwich array together during assembly, use, storage, and/or transport of the sandwich array.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: July 31, 2001
    Assignee: Hyseq, Inc.
    Inventors: Joerg Baier, Brian Hauser, Radoje T. Drmanac
  • Patent number: 6018041
    Abstract: The conditions under which oligonucleotides hybridize only with entirely homologous sequences are recognized. The sequence of a given DNA fragment is read by the hybridization and assembly of positively hybridizing probes through overlapping portions. By simultaneous hybridization of DNA molecules applied as dots and bound onto a filter, representing single-stranded phage vector with the cloned insert, with about 50,000 to 100,000 groups of probes, the main type of which is (A,T,C,G)(A,T,C,G)N8(A,T,C,G), information for computer determination of a sequence of DNA having the complexity of a mammalian genome are obtained in one step. To obtain a maximally completed sequence, three libraries are cloned into the phage vector, M13, bacteriophage are used: with the 0.5 kb and 7 kbp insert consisting of two sequences, with the average distance in genomic DNA of 100 kbp. For a million bp of genomic DNA, 25,000 subclones of the 0.5 kbp are required as well as 700 subclones 7 kb long and 170 jumping subclones.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: January 25, 2000
    Assignee: HYseq, Inc.
    Inventors: Radoje T. Drmanac, Radomir B. Crkvenjakov
  • Patent number: 5972619
    Abstract: The conditions under which oligonucleotide probes hybridize preferentially with entirely complementary and homologous nucleic acid targets are described. Using these hybridization conditions, overlapping oligonucleotide probes associate with a target nucleic acid. Following washes, positive hybridization signals are used to assemble the sequence of a given nucleic acid fragment. Representative target nucleic acids are applied as dots. Up to to 100,000 probes of the type (A,T,C,G)(A,T,C,G)N8(A,T,C,G) are used to determine sequence information by simultaneous hybridization with nucleic acid molecules bound to a filter. Additional hybridization conditions are provided that allow stringent hybridization of 6-10 nucleotide long oligomers which extends the utility of the invention. A computer process determines the information sequence of the target nucleic acid which can include targets with the complexity of mammalian genomes.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: October 26, 1999
    Assignee: Hyseq, Inc.
    Inventors: Radoje T. Drmanac, Radomir B. Crkvenjakov
  • Patent number: 5695940
    Abstract: The conditions under which oligonucleotide probes hybridize preferentially with entirely complementary and homologous nucleic acid targets are described. Using these hybridization conditions, overlapping oligonucleotide probes associate with a target nucleic acid. Following washes, positive hybridization signals are used to assemble the sequence of a given nucleic acid fragment. Representative target nucleic acids are applied as dots. Up to to 100,000 probes of the type (A,T,C,G) (A,T,C,G)N8(A,T,C,G) are used to determine sequence information by simultaneous hybridization with nucleic acid molecules bound to a filter. Additional hybridization conditions are provided that allow stringent hybridization of 6-10 nucleotide long oligomers which extends the utility of the invention. A computer process determines the information sequence of the target nucleic acid which can include targets with the complexity of mammalian genomes.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: December 9, 1997
    Assignee: Hyseq, Inc.
    Inventors: Radoje T. Drmanac, Radomir B. Crkvenjakov
  • Patent number: 5667972
    Abstract: The conditions under which oligonucleotides hybridize only with entirely homologous sequences are recognized. The sequence of a given DNA fragment is read by the hybridization and assembly of positively hybridizing probes through overlapping portions. By simultaneous hybridization of DNA molecules applied as dots and bound onto a filter, representing single-stranded phage vector with the cloned insert, with about 50,000 to 100,000 groups of probes, the main type of which is (A,T,C,G)(A,T,C,G)N8(A,T,C,G), information for computer determination of a sequence of DNA having the complexity of a mammalian genome are obtained in one step. To obtain a maximally completed sequence, three libraries are cloned into the phage vector, M13, bacteriophage are used: with the 0.5 kb and 7 kbp insert consisting of two sequences, with the average distance in genomic DNA of 100 kbp. For a million bp of genomic DNA, 25,000 subclones of the 0.5 kbp are required as well as 700 subclones 7 kb long and 170 jumping subclones.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: September 16, 1997
    Assignee: Hyseg, Inc.
    Inventors: Radoje T. Drmanac, Radomir B. Crkvenjakov
  • Patent number: 5525464
    Abstract: The conditions under which oligonucleotide probes hybridize preferentially with entirely complementary and homologous nucleic acid targets are described. Using these hybridization conditions, overlapping oligonucleotide probes associate with a target nucleic acid. Following washes, positive hybridization signals are used to assemble the sequence of a given nucleic acid fragment. Representative target nucleic acids are applied as dots. Up to to 100,000 probes of the type (A,T,C,G)(A,T,C,G)N8(A,T,C,G) are used to determine sequence information by simultaneous hybridization with nucleic acid molecules bound to a filter. Additional hybridization conditions are provided that allow stringent hybridization of 6-10 nucleotide long oligomers which extends the utility of the invention. A computer process determines the information sequence of the target nucleic acid which can include targets with the complexity of mammalian genomes.
    Type: Grant
    Filed: February 28, 1994
    Date of Patent: June 11, 1996
    Assignee: Hyseq, Inc.
    Inventors: Radoje T. Drmanac, Radomir B. Crkvenjakov
  • Patent number: 5492806
    Abstract: The sequence of a given nucleic acid fragment is read by the hybridization and assembly of positively hybridizing exactly complementary oligonucleotide probes through overlapping subfragments. By simultaneous hybridization of nucleic acid subfragments bound onto a filter, representing single-stranded phage vector with a cloned insert, with about 50,000 to 100,000 groups of probes, the main type of which is (A,T,C,G)(A,T,C,G)N8(A,T,C,G), information for computer determination of a sequence of DNA having the complexity of a mammalian genome are obtained in one step. To obtain a maximally completed sequence, three libraries cloned into the phage vector, M13, are used. The process can be easily and entirely robotized for factory reading of complex genomic fragments or DNA molecules.
    Type: Grant
    Filed: April 12, 1993
    Date of Patent: February 20, 1996
    Assignee: Hyseq, Inc.
    Inventors: Radoje T. Drmanac, Radomir B. Crkvenjakov
  • Patent number: 5202231
    Abstract: The conditions under which oligonucleotides hybridize only with entirely homologous sequences are recognized. The sequence of a given DNA fragment is read by the hybridization and assembly of positively hybridizing probes through overlapping portions. By simultaneous hybridization of DNA molecules applied as dots and bound onto a filter, representing single-stranded phage vector with the cloned insert, with about 50,000 to 100,000 groups of probes, the main type of which is (A,T,C,G)(A,T,C,G)N8(A,T,C,G), information for computer determination of a sequence of DNA having the complexity of a mammalian genome are obtained in one step. To obtain a maximally completed sequence, three libraries cloned into the phage vector, M13, bacteriophage are used: with the 0.5 kb and 7 kbp insert consisting of two sequences, with the average distance in genomic DNA of 100 kbp. For a million bp of genomic DNA, 25,000 subclones of the 0.5 kbp are required as well as 700 subclones 7 kb long and 170 jumping subclones.
    Type: Grant
    Filed: June 18, 1991
    Date of Patent: April 13, 1993
    Inventors: Radoje T. Drmanac, Radomir B. Crkvenjakov