Patents by Inventor Rafael Agnelli Mesquita

Rafael Agnelli Mesquita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170029912
    Abstract: The present invention relates to a martensitic-ferritic stainless steel with high corrosion resistance that comprises the following chemical composition: C: from 5 0.005 to 0.030%; Si: from 0.10 to 0.40%; Mn from 0.20 to 0.80%; P: 0.020% max; S: 0.005% max; Cr: from 13 to 15%; Ni: from 4.0 to 6.0%; Mo: from 2.0 to 4.5%; V: from 0.01 to 0.10%; Nb: from 0.01 to 0.50%; N: from 0.001 to 0.070%; Al: from 0.001 to 0.060%; Ti: from 0.001 to 0.050%; Cu: from 0.01 to 1.50%; O: 0.005% max (all in weight percent), wherein the balance is performed by Fe and unavoidable impurities 10 from the industrial possessing in acceptable levels. Additionally, the martensitic-ferritic stainless steel of the present invention has the localized corrosion parameter (LCP), between 3.2 and 6.2, as defined by equation below; LCP=0.500?% Cr+1.287·% Mo+1.308·% N?5.
    Type: Application
    Filed: February 25, 2015
    Publication date: February 2, 2017
    Inventors: Ricardo Nolasco DE CARVALHO, Marcelo Almeida Cunha FERREIRA, Marília Mendonça DE LIMA, Rafael Agnelli MESQUITA, Alexandre Bellegard FARINA, Rodrigo Cesar Nascimento LIBERTO
  • Publication number: 20130243639
    Abstract: The present invention relates to a steel for extrusion tools characterized for lower cost and tempering resistance higher than that of conventional steel H13, whose chemical composition, in percentage by mass, comprises the following: Carbon between 0.40 and 0.60, Silicon below 1.0, Phosphorus below 0.030; Chromium between 2.5 and 4.5; Molybdenum between 0.5 and 0.7, considering that molybdenum can be replaced by tungsten in a ratio=2W/1Mo; Vanadium between 0.10 and 1.0; Manganese below 1.0; the remainder consisting essentially of Fe and inevitable deleterious substances. As an option to provide high hardness after nitriding, the Al content of the steel of the present invention can be ?1.0; for high toughness purposes, however, this Al content should be kept below 0.10.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 19, 2013
    Inventors: Celso Antonio Barbosa, Rafael Agnelli Mesquita
  • Publication number: 20120321505
    Abstract: STEEL WITH HIGH TEMPERING RESISTANCE comprising a composition of alloying elements consisting essentially of, in percent by mass, C between 0.20 and 0.50, Si lower than 1.0, P lower than 0.030, Cr between 3.0 and 4.0, Mo between 1.5 and 4.0, V between 0.1 and 2.0, Co lower than 1.5, being the remaining composed of Fe and inevitable deleterious substances. The steel is produced by processes involving ingot casting and hot/cold forming, or used with the cast structure; or by processes involving atomization or dispersion of the molten metal, such as powder metallurgy, powder injection or spray forming.
    Type: Application
    Filed: November 10, 2010
    Publication date: December 20, 2012
    Inventors: Celso Antonio Barbosa, Rafael Agnelli Mesquita
  • Publication number: 20120315181
    Abstract: STAINLESS MOLD STEEL WITH LOWER DELTA-FERRITE CONTENT comprising a composition of alloying elements consisting essentially of, in percentage by mass, Carbon between 0.01 and 0.20; Nitrogen between 0.01 and 0.07; Manganese between 2.0 and 4.0; Nickel between 0.01 and 1.0; Chromium between 11.0 and 13.0; Molybdenum+Tungsten lower than 1.0; Copper between 0.01 and 1.5; Vanadium between 0.01 and 1.0; Sulfur between 0.01 and 0.20; Calcium at maximum 0.01; Aluminum lower than 0.05; Silicon lower than 1.0; the remainder consisting essentially of Fe and inevitable impurities to the preparation process.
    Type: Application
    Filed: November 10, 2010
    Publication date: December 13, 2012
    Inventors: Celso Antonio Barbosa, Rafael Agnelli Mesquita
  • Publication number: 20120288397
    Abstract: 1—“BAINITIC STEEL FOR MOULDS”, with a composition of alloy elements that consist, in mass percentage, of Carbon between 0.05 and 1.0; Manganese between 0.5 and 3.0; Phosphorous, Boron, Titanium and Vanadium given by the ratio NU=[Ti+P+10B+(V?0.10)], being the values of NU between 0.02 and 0.30, with titanium always above 0.005, boron always below 0.010 and Vanadium may be partially or totally replaced with Niobium, in the proportion of two parts in mass of niobium for one part of Vanadium; Nickel, Molybdenum and Chromium given by the ratio G=[0.13Ni+0.60Mo+0.26Cr], with values of G above 0.10 and below 1.0; Sulphur up to 0.10; Silicon between 0.05 and 3.0; Nitrogen below 0.10; Calcium with contents up to 0.02; Aluminum below 0.5, Cobalt lower than 2.
    Type: Application
    Filed: April 8, 2010
    Publication date: November 15, 2012
    Applicant: VILLARES METALS S/A
    Inventors: Celso Antonio Barbosa, Rafael Agnelli Mesquita
  • Patent number: 8168009
    Abstract: “HARD ALLOYS WITH DRY COMPOSITION”, presenting a composition of alloy elements consisting, in mass percentage, of Carbon between 0.5 and 2.0; Chrome between 1.0 and 10.0; Tungsten-equivalent, as given by ratio 2Mo+W, between 7.0 and 14.0; Niobium between 0.5 and 3.5. Niobium can be partially or fully replaced with Vanadium, at a ratio of 2% Niobium to each 1% Vanadium; Vanadium between 0.5 and 3.5. Vanadium can be partially or fully replaced with Niobium, at a ratio of 2% Niobium to each 1% Vanadium; Cobalt lower than 8, the remaining substantially Iron and impurities inevitable to the preparation process. As an option to refine carbides, the steel of the present invention can have content of Nitrogen controlled, below 0.030 and addition of Cerium or other earth elements at content between 0.005 and 0.020. For the same purpose, Silicon and Aluminum can be optionally added, at content between 0.5 and 3.0% for both of them.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: May 1, 2012
    Inventors: Rafael Agnelli Mesquita, Celso Antonio Barbosa
  • Publication number: 20090196786
    Abstract: “HARD ALLOYS WITH DRY COMPOSITION”, presenting a composition of alloy elements consisting, in mass percentage, of Carbon between 0.5 and 2.0; Chrome between 1.0 and 10.0; Tungsten-equivalent, as given by ratio 2Mo+W, between 7.0 and 14.0; Niobium between 0.5 and 3,5. Niobium can be partially or fully replaced with Vanadium, at a ratio of 2% Niobium to each 1% Vanadium; Vanadium between 0.5 and 3.5. Vanadium can be partially or fully replaced with Niobium, at a ratio of 2% Niobium to each 1% Vanadium; Cobalt lower than 8, the remaining substantially Iron and impurities inevitable to the preparation process. As an option to refine carbides, the steel of the present invention can have content of Nitrogen controlled, below 0.030 and addition of Cerium or other earth elements at content between 0.005 and 0.020. For the same purpose, Silicon and Aluminum can be optionally added, at content between 0.5 and 3.0% for both of them.
    Type: Application
    Filed: July 18, 2007
    Publication date: August 6, 2009
    Inventors: Rafael Agnelli Mesquita, Celso Antonio Barbosa
  • Publication number: 20090123322
    Abstract: High-speed steel for saw blades, presenting a composition of alloy elements consisting, in mass percentage, of Carbon between 0.5 and 1.5; Chromium between 1.0 and 10.0; equivalent Tungsten, given by 2Mo+W relation, between 3.0 and 10.0; Niobium between 0.5 and 2.0. Niobium may be partially or fully replaced with Vanadium, at a ratio of 2% Niobium to each 1% Vanadium; Vanadium between 0.3 and 2.0. Vanadium may be partially or fully replaced with Niobium, at a ratio of 2% Niobium to each 1% Vanadium, Silicon between 0.3 and 3.5. Silicon may be partially or fully replaced with Aluminum, at a 1:1 ratio; Cobalt lower than 8, the remaining substantially Fe and impurities inevitable to the preparation process.
    Type: Application
    Filed: February 2, 2007
    Publication date: May 14, 2009
    Inventors: Celso Antonio Barbosa, Rafael Agnelli Mesquita