Patents by Inventor Rafael Diana

Rafael Diana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093137
    Abstract: A sparger assembly for a bioprocessing system includes a base and a plurality of spargers connected to the base, each sparger including a plurality of pores, the plurality of spargers each have a generally cylindrical shape. Each of the plurality of spargers includes a sidewall and a top, which define the cylindrical shape, the sidewall and the top each include a plurality of pores. The pores of the sidewall can be arranged around a circumference of the sidewall at an array of heights. Ridges may also be located on the sidewall above a respective array of pores.
    Type: Application
    Filed: September 19, 2022
    Publication date: March 21, 2024
    Applicant: GLOBAL LIFE SCIENCES SOLUTIONS USA LLC
    Inventor: RAFAEL DIANA
  • Patent number: 9550969
    Abstract: An inflatable bioreactor bag for cell cultivation, which comprising a top and a bottom sheet of flexible material, joined together to form two end edges and two side edges, wherein one baffle or a plurality of baffles extend from the bottom sheet in a region where the shortest distance to any one of the two end edges is higher than about one fourth of the shortest distance between the two end edges.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: January 24, 2017
    Assignee: GE Healthcare Bio-Sciences AB
    Inventors: Veronique Chotteau, Rafael Diana, Christian Kaisermayer, Eva Lindskog, Craig Robinson, Jimmie L. Rucker, Kieron D. Walsh
  • Patent number: 8983574
    Abstract: A catheter device for deploying a local magnetic resonance imaging (MRI) coil is provided. The catheter device includes an outer catheter shaft having a lumen extending from a proximal end to a distal end and an inner catheter shaft having a lumen extending from a proximal end to a distal end. The outer and inner catheter shafts are movably engaged such that one can move relative to the other. A plurality of non-metallic filaments are coupled on one end to the outer catheter shaft and coupled on another end to the inner catheter shaft. The plurality of non-metallic filaments are intertwined to form a braid, to which a local MRI coil is coupled. The local MRI coil is configured to have a circular shape when the braid is in a deployed position. Additionally, motion tracking coils can be coupled to the braid to provide motion tracking information for motion compensation.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: March 17, 2015
    Assignee: The Brigham and Women's Hospital
    Inventors: Ehud Schmidt, Rafael Diana
  • Publication number: 20140011270
    Abstract: An inflatable bioreactor bag for cell cultivation, which comprising a top and a bottom sheet of flexible material, joined together to form two end edges and two side edges, wherein one baffle or a plurality of baffles extend from the bottom sheet in a region where the shortest distance to any one of the two end edges is higher than about one fourth of the shortest distance between the two end edges.
    Type: Application
    Filed: March 16, 2012
    Publication date: January 9, 2014
    Applicant: GE HEALTHCARE BIO-SCIENCES AB
    Inventors: Veronique Chotteau, Rafael Diana, Christian Kaisermayer, Eva Lindskog, Craig Robinson, Jimmie L. Rucker, Kieron D. Walsh
  • Publication number: 20120316429
    Abstract: A catheter device for deploying a local magnetic resonance imaging (MRI) coil is provided. The catheter device includes an outer catheter shaft having a lumen extending from a proximal end to a distal end and an inner catheter shaft having a lumen extending from a proximal end to a distal end. The outer and inner catheter shafts are movably engaged such that one can move relative to the other. A plurality of non-metallic filaments are coupled on one end to the outer catheter shaft and coupled on another end to the inner catheter shaft. The plurality of non-metallic filaments are intertwined to form a braid, to which a local MRI coil is coupled. The local MRI coil is configured to have a circular shape when the braid is in a deployed position. Additionally, motion tracking coils can be coupled to the braid to provide motion tracking information for motion compensation.
    Type: Application
    Filed: November 17, 2010
    Publication date: December 13, 2012
    Inventors: Ehud Schmidt, Rafael Diana