Patents by Inventor Rafael R. Gattass

Rafael R. Gattass has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180356599
    Abstract: Systems and methods are provided for mechanically encapsulating an infrared transmitting optical fiber, removing any power coupled to the cladding of the infrared optical fiber, and bridging the thermal properties between the optical fiber and the mechanical ferrule used. Embodiments of the present disclosure have several advantages over prior systems. For example, in an embodiment, the transmitting ferrule does not require epoxy to mount the fiber to the ferrule, isolates the front face of the fiber, and allows for high power to be incident on the connector without damage by reducing the thermal induced stress and managing any stray light coupled to the core.
    Type: Application
    Filed: June 5, 2018
    Publication date: December 13, 2018
    Inventors: Rafael R. Gattass, Leslie Brandon Shaw, Jasbinder S. Sanghera, Shyam S. Bayya, Daniel L. Rhonehouse
  • Patent number: 10126630
    Abstract: A device for the generation of supercontinuum in infrared fiber with a light source comprising a pulsed microchip laser operating at a wavelength greater than one micrometer, a nonlinear optical parametric element operated without a cavity, and an infrared fiber. Light from the laser is pumped into the nonlinear optical parametric element to generate two new wavelengths, and the output from the nonlinear optical parametric element is launched into the infrared fiber. Output from the infrared fiber has a bandwidth greater than the input laser bandwidth by at least 100% and an emission wavelength range from 2 to 14 micrometers.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: November 13, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Rafael R. Gattass, Jasbinder S. Sanghera, L. Brandon Shaw
  • Publication number: 20180106968
    Abstract: Systems and methods are disclosed for splicing crystal fibers to silica glass fibers. Embodiments of the present disclosure provide mechanically stable bonds with negligible optical transmission loss by splicing fibers through a thermally enhanced reaction bonding process at lower temperatures than the melting point of the crystal. In an embodiment, mixing of the materials at elevated temperatures forms a stable intermediary material which enhances strength and reduces the transmission losses.
    Type: Application
    Filed: October 16, 2017
    Publication date: April 19, 2018
    Inventors: Rajesh Thapa, Rafael R. Gattass, Daniel J. Gibson, Woohong Kim, L. Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20180093912
    Abstract: A method of making an optical fiber with multiple openings comprising the steps of fabricating an extrusion die using additive manufacturing such that the extrusion die has a plurality of channels that combine inside the die into another set of channels, extruding a glass, forming a fiber optic preform having a plurality of longitudinal openings that run the entire length, attaching a barrier layer for pressure application, and stretching the preform into an optical fiber with multiple openings. An extrusion die comprising an additive manufactured material, having a proximal side having openings and having a distal side having openings, wherein the openings of the proximal side are of feed channels, wherein the openings of the distal side are of forming channels, and wherein in side the body of the die, two of the feed channels combine the forming channels.
    Type: Application
    Filed: October 2, 2017
    Publication date: April 5, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel J. Gibson, Rafael R. Gattass, Daniel L. Rhonehouse, Shyam S. Bayya, L. Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20170371229
    Abstract: A device for the generation of supercontinuum in infrared fiber with a pump light comprising a microchip laser operating with a wavelength of 1.0 ?m or greater that can be wavelength shifted though a nonlinear element to a wavelength beyond the two-photon absorption of the infrared fiber and launched into infrared fiber whereby the spectrum is broadened in the infrared fiber through various nonlinear processes to generate a supercontinuum within the mid-IR from 2 to 14 ?m.
    Type: Application
    Filed: September 8, 2017
    Publication date: December 28, 2017
    Inventors: Rafael R. Gattass, Jasbinder S. Sanghera, L. Brandon Shaw
  • Patent number: 9785033
    Abstract: A device for the generation of supercontinuum in infrared fiber with a pump light comprising a microchip laser operating with a wavelength of 1.0 ?m or greater that can be wavelength shifted though a nonlinear element to a wavelength beyond the two-photon absorption of the infrared fiber and launched into infrared fiber whereby the spectrum is broadened in the infrared fiber through various nonlinear processes to generate a supercontinuum within the mid-IR from 2 to 14 ?m.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: October 10, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Rafael R. Gattass, Jasbinder S. Sanghera, L. Brandon Shaw
  • Patent number: 9570873
    Abstract: A method of generating ultrashort pulses with wavelengths greater than 2 ?m comprising a short pulse diode laser or fiber laser operating at a wavelength of 1 ?m or greater with a pulse width of 10 ps or greater, one or more amplification stages to increase the peak power of the pulsed source, a nonlinear fiber stage whereby the dispersion of the nonlinear fiber is anomalous at the pulsed source wavelength such that the fiber breaks up the pulse into a series of sub-ps pulse train through modulation instability which may be seeded by spontaneous noise which are then wavelength shifted in one or more stages by soliton self frequency shift in anomalous dispersion fiber or Raman in normal dispersion fiber and amplified in one or more stages to generate a high peak power ultrashort pulse (<1 ps) source at a wavelength of 2.4 ?m or greater.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: February 14, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Leslie Brandon Shaw, Rafael R. Gattass, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20170017035
    Abstract: A method for shaping an output light beam from an optical fiber by controlling the phase and amplitude of the beam by producing beam shaping elements on an exit facet of the optical fiber by direct surface texturing of the exit facet, where a controlled phase difference is achieved across the fiber cross-section over a predefined pattern. The optical fiber can be a single mode fiber or a multi-mode fiber. Either a binary or a complex phase difference can be achieved. Also disclosed is the related system for shaping an output light beam from an optical fiber.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 19, 2017
    Inventors: Jasbinder S. Sanghera, Catalin M. Florea, Rafael R. Gattass, Ishwar D. Aggarwal
  • Patent number: 9507090
    Abstract: A method for shaping an output light beam from an optical fiber by controlling the phase and amplitude of the beam by producing beam shaping elements on an exit facet of the optical fiber by direct surface texturing of the exit facet, where a controlled phase difference is achieved across the fiber cross-section over a predefined pattern. The optical fiber can be a single mode fiber or a multi-mode fiber. Either a binary or a complex phase difference can be achieved. Also disclosed is the related system for shaping an output light beam from an optical fiber.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 29, 2016
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY
    Inventors: Jasbinder S. Sanghera, Catalin M. Florea, Rafael R. Gattass, Ishwar D. Aggarwal
  • Patent number: 9213215
    Abstract: A method of generating a supercontinuum in chalcogenide fiber with a pump light comprising a short pulse fiber laser or diode laser operating with a wavelength of 1.0 ?m or greater that is wavelength shifted through a nonlinear fiber one or more times and amplified one or more times and launched into a chalcogenide fiber whereby the spectrum is broadened in the chalcogenide fiber through various nonlinear processes to generate a supercontinuum within the mid-IR from 1.5 to greater than 5 ?m.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: December 15, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Leslie Brandon Shaw, Rafael R. Gattass, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20150253504
    Abstract: A method for shaping an output light beam from an optical fiber by controlling the phase and amplitude of the beam by producing beam shaping elements on an exit facet of the optical fiber by direct surface texturing of the exit facet, where a controlled phase difference is achieved across the fiber cross-section over a predefined pattern. The optical fiber can be a single mode fiber or a multi-mode fiber. Either a binary or a complex phase difference can be achieved. Also disclosed is the related system for shaping an output light beam from an optical fiber.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 10, 2015
    Inventors: Jasbinder S. Sanghera, Catalin M. Florea, Rafael R. Gattass, Ishwar D. Aggarwal
  • Publication number: 20150212387
    Abstract: A device for the generation of supercontinuum in infrared fiber with a pump light comprising a microchip laser operating with a wavelength of 1.0 ?m or greater that can be wavelength shifted though a nonlinear element to a wavelength beyond the two-photon absorption of the infrared fiber and launched into infrared fiber whereby the spectrum is broadened in the infrared fiber through various nonlinear processes to generate a supercontinuum within the mid-IR from 2 to 14 ?m.
    Type: Application
    Filed: January 29, 2015
    Publication date: July 30, 2015
    Inventors: Rafael R. Gattass, Jasbinder S. Sanghera, L. Brandon Shaw
  • Patent number: 8989544
    Abstract: The present invention provides optical devices that employ nonlinear optical effects for processing optical signals. For example, such an optical device can include a nano-sized interferometric component that provides an optical output signal via interference of two input signals subsequent to their asymmetric nonlinear phase accumulation. The interferometric element can have a variety of configurations, such as Sagnac, Mach-Zehnder or Michelson configurations.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: March 24, 2015
    Assignee: President & Fellows of Harvard College
    Inventors: Eric Mazur, Rafael R. Gattass, Geoffry T. Svacha, Katherine C. F. Phillips, Christopher C. Evans
  • Patent number: 8710470
    Abstract: An infrared laser source system that combines laser emitters through an optical waveguide. Each emitter is coupled to a port of the optical waveguide and the waveguided signal is combined to provide a spatially combined laser source with a single common exit aperture. The materials used for waveguiding allow the propagation of wavelengths in the infrared. The system can be used for combining multiple laser emitters to increase the total output power and/or for combination of multiple emitters with different wavelength for increased spectral coverage out of the laser system.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: April 29, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Rafael R. Gattass, Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Lynda E Busse
  • Publication number: 20140014858
    Abstract: An infrared laser source system that combines laser emitters through an optical waveguide. Each emitter is coupled to a port of the optical waveguide and the waveguided signal is combined to provide a spatially combined laser source with a single common exit aperture. The materials used for waveguiding allow the propagation of wavelengths in the infrared. The system can be used for combining multiple laser emitters to increase the total output power and/or for combination of multiple emitters with different wavelength for increased spectral coverage out of the laser system.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 16, 2014
    Inventors: Rafael R. Gattass, Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Lynda E. Busse
  • Publication number: 20130188660
    Abstract: A method of generating ultrashort pulses with wavelengths greater than 2 ?m comprising a short pulse diode laser or fiber laser operating at a wavelength of 1 ?m or greater with a pulse width of 10 ps or greater, one or more amplification stages to increase the peak power of the pulsed source, a nonlinear fiber stage whereby the dispersion of the nonlinear fiber is anomalous at the pulsed source wavelength such that the fiber breaks up the pulse into a series of sub-ps pulse train through modulation instability which may be seeded by spontaneous noise which are then wavelength shifted in one or more stages by soliton self frequency shift in anomalous dispersion fiber or Raman in normal dispersion fiber and amplified in one or more stages to generate a high peak power ultrashort pulse (<1 ps) source at a wavelength of 2.4 ?m or greater.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 25, 2013
    Inventors: Leslie Brandon Shaw, Rafael R. Gattass, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20130188240
    Abstract: A method of generating a supercontinuum in chalcogenide fiber with a pump light comprising a short pulse fiber laser or diode laser operating with a wavelength of 1.0 ?m or greater that is wavelength shifted through a nonlinear fiber one or more times and amplified one or more times and launched into a chalcogenide fiber whereby the spectrum is broadened in the chalcogenide fiber through various nonlinear processes to generate a supercontinuum within the mid-IR from 1.5 to greater than 5 ?m.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 25, 2013
    Inventors: Leslie Brandon Shaw, Rafael R. Gattass, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20120039560
    Abstract: The present invention provides optical devices that employ nonlinear optical effects for processing optical signals. For example, such an optical device can include a nano-sized interferometric component that provides an optical output signal via interference of two input signals subsequent to their asymmetric nonlinear phase accumulation. The interferometric element can have a variety of configurations, such as Sagnac, Mach-Zehnder or Michelson configurations.
    Type: Application
    Filed: January 8, 2010
    Publication date: February 16, 2012
    Applicant: President & Fellows of Harvard College
    Inventors: Eric Mazur, Rafael R. Gattass, Geoffry T. Svacha, Katherine C.f. Phillips, Christopher C. Evans
  • Publication number: 20090320529
    Abstract: Thermal 3-D microstructuring of photonic structures is provided by depositing laser energy by non-linear absorption into a focal volume about each point of a substrate to be micromachined at a rate greater than the rate that it diffuses thereout to produce a point source of heat in a region of the bulk larger than the focal volume about each point that structurally alters the region of the bulk larger than the focal volume about each point, and by dragging the point source of heat thereby provided point-to-point along any linear and non-linear path to fabricate photonic structures in the bulk of the substrate. Exemplary optical waveguides and optical beamsplitters are thermally micromachined in 3-D in the bulk of a glass substrate. The total number of pulses incident to each point is controlled, either by varying the rate that the point source of heat is scanned point-to-point and/or by varying the repetition rate of the laser, to select the mode supported by the waveguide or beamsplitter to be micromachined.
    Type: Application
    Filed: August 3, 2009
    Publication date: December 31, 2009
    Applicant: PRESIDENT & FELLOWS OF HARVARD COLL
    Inventors: Chris Schaffer, Andre Brodeur, Rafael R. Gattass, Jonathan B. Ashcom, Eric Mazur
  • Patent number: 7568365
    Abstract: Thermal 3-D microstructuring of photonic structures is provided by depositing laser energy by non-linear absorption into a focal volume about each point of a substrate to be micromachined at a rate greater than the rate that it diffuses thereout to produce a point source of heat in a region of the bulk larger than the focal volume about each point that structurally alters the region of the bulk larger than the focal volume about each point, and by dragging the point source of heat thereby provided point-to-point along any linear and non-linear path to fabricate photonic structures in the bulk of the substrate. Exemplary optical waveguides and optical beamsplitters are thermally micromachined in 3-D in the bulk of a glass substrate. The total number of pulses incident to each point is controlled, either by varying the rate that the point source of heat is scanned point-to-point and/or by varying the repetition rate of the laser, to select the mode supported by the waveguide or beamsplitter to be micromachined.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: August 4, 2009
    Assignee: President & Fellows of Harvard College
    Inventors: Chris Schaffer, André Brodeur, Rafael R. Gattass, Jonathan B. Ashcom, Eric Mazur