Patents by Inventor Rafael Wiemker

Rafael Wiemker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240090870
    Abstract: A diaphragm imaging device includes at least one electronic processor programmed to perform a diaphragm imaging method including receiving ultrasound imaging data of a diaphragm of a patient, the ultrasound imaging data being acquired by an associated ultrasound imaging probe with the probe at a plurality of different observable probe angles (?obs); for each observable probe angle, determining a corresponding apparent thickness (dI) of the diaphragm of the patient from the received ultrasound data acquired at that observable probe angle; and estimating a thickness (dD) of the diaphragm of the patient based at least on the apparent thicknesses (dI).
    Type: Application
    Filed: June 16, 2023
    Publication date: March 21, 2024
    Inventors: Thomas Koehler, Rafael Wiemker, Comelis Petrus Hendriks, Michael Polkey, Joerg Sabczynski, Roberto Buizza, Jaap Roger Haartsen, Nataly Wieberneit
  • Publication number: 20240091474
    Abstract: A mechanical ventilation device includes at least one electronic controller configured to receive imaging data related to a dimension of a diaphragm of a patient during inspiration and expiration while the patient undergoes mechanical ventilation therapy with an associated mechanical ventilator; calculate a pressure value (Pl, DPl) of a chest of the patient based on at least the imaging data; and when the calculated pressure value (Pl, DPl) does not satisfy an acceptance criterion, at least one of output an alert indicative of the calculated pressure value (Pl, DPl) failing to satisfy the acceptance criterion; and output a recommended adjustment to one or more parameters of the mechanical ventilation therapy delivered to the patient.
    Type: Application
    Filed: July 7, 2023
    Publication date: March 21, 2024
    Inventors: Cornelis Petrus Hendriks, Roberto Buizza, Jaap Roger Haartsen, Joerg Sabczynski, Thomas Koehler, Rafael Wiemker, Michael Polkey
  • Publication number: 20240090849
    Abstract: The present invention relates to multispectral imaging. In order to improve an identification of relevant multispectral material transitions (in particular caused by injected contrast agent), an apparatus is proposed to use the local maxima of the variances and/or covariances of the intensities of the multi-channel images to locate material transitions. In comparison to gradient vectors, the local variance is not directed and not prone to noise. An alternative apparatus is proposed to use the local covariance deficits of the intensities of the multi-channel images to locate material transitions. The proposed alternative approach is independent of spatial drifts across the image volume.
    Type: Application
    Filed: November 28, 2021
    Publication date: March 21, 2024
    Inventors: RAFAEL WIEMKER, LIRAN GOSHEN, HANNES NICKISCH, CLAAS BONTUS, TOM BROSCH, JOCHEN PETERS, ROLF JÜRGEN WEESE
  • Publication number: 20240037754
    Abstract: A method for identifying a material boundary within volumetric image data is based on use of a model boundary transition function, which models the expected progression of voxel values across the material boundary, as a function of distance. Each voxel is taken in turn, and voxel values within a subregion surrounding the voxel are fitted to the model function, and the corresponding fitting parameters are derived, in addition to a parameter relating to quality of the model fit. Based on these parameters for each voxel, for each of at least a subset of the voxels, a candidate spatial point is identified, estimated to lie on the material boundary within the 3-D image dataset. The result is a cloud of candidate spatial points which spatially correspond to the outline of the boundary wall. Based on these, a representation of the boundary wall can be generated, for example a surface mesh.
    Type: Application
    Filed: December 7, 2021
    Publication date: February 1, 2024
    Inventors: JÖRG SABCZYNSKI, RAFAEL WIEMKER, TOBIAS KLINDER
  • Publication number: 20240023926
    Abstract: A diaphragm measurement device includes a non-transitory storage medium storing a patient-specific registration model for referencing ultrasound imaging data to a reference frame. At least one electronic processor is programmed to perform a diaphragm measurement method including receiving ultrasound imaging data of a diaphragm of a patient during inspiration and expiration while the patient undergoes mechanical ventilation therapy with a mechanical ventilator; calculating a diaphragm thickness metric based on the received ultrasound imaging data of the diaphragm of the patient referenced to the reference frame using the patient-specific registration model; and displaying, on a display device, a representation of the calculated diaphragm thickness metric.
    Type: Application
    Filed: June 8, 2023
    Publication date: January 25, 2024
    Inventors: Rafael Wiemker, Roberto Buizza, Jaap Roger Haartsen, Cornelis Petrus Hendriks, Thomas Koehler, Michael Polkey, Joerg Sabczynski, Nataly Wieberneit
  • Patent number: 11880432
    Abstract: Presented are concepts for obtaining a confidence measure for a machine learning model. One such concept process input data with the machine learning model to generate a primary result. It also generate a plurality of modified instances of the input data and processes the plurality of modified instances of the input data with the machine learning model to generate a respective plurality of secondary results. A confidence measure relating to the primary result is determined based on the secondary results.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: January 23, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Matthias Lenga, Rafael Wiemker, Tobias Klinder, Marten Bergtholdt, Heike Carolus
  • Publication number: 20240013355
    Abstract: A mechanism for reducing the appearance of tagged elements in a medical image. This is achieved by processing the medical image to generate a separate, suppression image that contains only the tagged elements. The medical image and the suppression image are then combined to reduce the appearance of the tagged elements in the medical image. This can be achieved through modification of the suppressed image, before the combination, and/or weighting of the medical image and the suppression image during combination.
    Type: Application
    Filed: November 15, 2021
    Publication date: January 11, 2024
    Inventors: RAFAEL WIEMKER, AMAR CHANDRA DHANANTWARI
  • Publication number: 20240005455
    Abstract: The present invention relates to edge restoration. In order to improve a restoration of the artificially created cleansed edges, an apparatus is proposed to automatically restore image edges after digital subtraction of digital material substitution to optimally resemble image edges in unmodified locations. The appearance of edges is machine-learned in an unsupervised non-analytical way from unmodified locations, and then, after digital suppression or digital material substitution, applied to the artificially created cleansed edges.
    Type: Application
    Filed: November 28, 2021
    Publication date: January 4, 2024
    Inventors: RAFAEL WIEMKER, LIRAN GOSHEN, HEIKE CAROLUS RUPPERTSHOFEN, TOBIAS KLINDER
  • Publication number: 20230414889
    Abstract: A diaphragm measurement system (1) includes at least one electronic processor (13) programmed to perform a diaphragm measurement method (100) including receiving ultrasound imaging data (24) of a diaphragm of a patient over a time period encompassing multiple breaths; receiving respiration data of the patient over the time period; calculating a diaphragm thickness metric based on the received ultrasound imaging data of the diaphragm and the received respiration data; and displaying, on a display device (14), a representation (30) of the calculated diaphragm thickness metric.
    Type: Application
    Filed: June 6, 2023
    Publication date: December 28, 2023
    Inventors: Jaap Roger Haartsen, Roberto Buizza, Cornelis Petrus Hendriks, Rafael Wiemker, Thomas Koehler, Joerg Sabczynski, Michael Polkey, Nataly Wieberneit
  • Publication number: 20230410307
    Abstract: A method for visualization may include: obtaining data of a first perfusion measure of myocardial tissues of a patient; obtaining data of a geometry of a coronary artery of the patient; obtaining data of a second perfusion measure of the coronary artery; obtaining data of a flow impediment measure along the coronary artery based on the data of the second perfusion measure of the coronary artery; and visualizing, on a single image, the first perfusion measure of the myocardial tissues and the coronary artery, the coronary artery being overlaid with the first perfusion measure on the single image, the visualized coronary artery representing the geometry of the coronary artery and the flow impediment measure along the coronary artery.
    Type: Application
    Filed: November 22, 2021
    Publication date: December 21, 2023
    Inventors: HANNES NICKISCH, HOLGER SCHMITT, CLAAS BONTUS, RAFAEL WIEMKER
  • Publication number: 20230404432
    Abstract: A medical device for treating an associated patient includes a bronchial sensor device configured to measure fluid pressure in a bronchus of the associated patient; and an electronic controller configured to: receive the fluid pressure data from the bronchial sensor device; and calculate a fluid flow measurement through the bronchus based on the measured fluid pressure.
    Type: Application
    Filed: February 21, 2023
    Publication date: December 21, 2023
    Inventors: Joerg Sabczynski, Bernhard Gleich, Juergen Erwin Rahmer, Thomas Koehler, Rafael Wiemker, Roberto Buizza, Cornelis Petrus Hendriks, Jaap Roger Haartsen, Nataly Wieberneit
  • Publication number: 20230402157
    Abstract: A non-transitory storage medium stores instructions readable and executable by at least one electronic processor to receive clinical data for a current patient (P); search a database of CT scans and/or patient-specific mechanical ventilation models for other patients using the clinical data for the current patient as a search criterion to identify a similar patient in the database and similar patient data (S) comprising a CT scan and/or a patient-specific mechanical ventilation model for the similar patient; determine a patient-specific mechanical ventilation model for the current patient based on the CT scan and/or patient-specific mechanical ventilation model for the similar patient; generate ventilator configuration data for mechanically ventilating the current patient based on the determined patient-specific mechanical ventilation model for the current patient.
    Type: Application
    Filed: April 3, 2023
    Publication date: December 14, 2023
    Inventors: Cornelis Petrus Hendriks, Roberto Buizza, Michael Polkey, Joerg Sabczynski, Rafael Wiemker, Jaap Roger Haartsen, Thomas Koehler
  • Publication number: 20230334732
    Abstract: A method for generating an image representation of slices through a body based on tomographic imaging data for the body. The method comprises processing reconstructed tomographic image slices to selectively embed in each slice image information from at least one 3D volume rendering of the slice plane within the 3D tomographic image dataset. This is done through a selection process wherein, based on a set of pre-defined criteria, a decision is made for each pixel in each reconstructed tomographic slice as to whether the pixel value should be replaced with a new, modified pixel value determined based on the at least one volume rendering. This may comprise simply swapping the pixel value for the value of the corresponding pixel value in the volume rendering, or it may comprise a more complex process, for instance blending the two values, or adjusting a transparency of the pixel value based on the at least one volume rendering.
    Type: Application
    Filed: October 28, 2021
    Publication date: October 19, 2023
    Inventors: RAFAEL WIEMKER, DANIEL BYSTROV, LIRAN GOSHEN
  • Patent number: 11694386
    Abstract: A System for image processing (IPS), in particular for lung imaging. The system (IPS) comprises an interface (IN) for receiving at least a part of a 3D image volume (VL) acquired by PAT an imaging apparatus (IA1) of a lung (LG) of a subject (PAT) by exposing the subject (PAT) to a first interrogating signal. A layer definer (LD) of the system (IPS) is configured to define, in the 3D image volume, a layer object (LO) that includes a representation of a surface (S) of the lung (LG). A renderer (REN) of the system (IPS) is configured to render at least a part of the layer object (LO) in 3D at a rendering view (Vp) for visualization on a display device (DD).
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: July 4, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jörg Sabczynski, Manfred Mueller, Rafael Wiemker
  • Publication number: 20230181851
    Abstract: A medical device for treating an associated patient includes an electronic processing device configured to receive ventilation waveform data during mechanical ventilation of the associated patient and to perform a patient-ventilator asynchrony monitoring method including detecting initial patient-ventilator asynchrony events during a training period of the mechanical ventilation by analysis of measurements of the associated patient acquired during the training period; training a machine learning (ML) component to analyze ventilation waveform data to detect patient-ventilator asynchrony events using the ventilation waveform data received during the training period with labels indicating the initial patient-ventilator asynchrony events; applying the patient-specific ML component to the ventilation waveform data received after the training period to detect patient-ventilator asynchrony events occurring after the training period; and a display device configured to display an indication of patient-ventilator async
    Type: Application
    Filed: October 6, 2022
    Publication date: June 15, 2023
    Inventors: Jaap Roger Haartsen, Roberto Buizza, Joerg Sabczynski, Rafael Wiemker, Thomas Koehler, Cornelis Petrus Hendriks, Michael Polkey, Rita Priori, Nataly Wieberneit, Stefan Winter
  • Patent number: 11657500
    Abstract: The invention relates to a system for assessing a pulmonary image which allows for an improved assessment with respect to lung nodules detectability. The pulmonary image is smoothed for providing different pulmonary images (20, 21, 22) with different degrees of smoothing, wherein signal values and noise values, which are indicative of the lung vessel detectability and the noise in these images, are determined and used for determining an image quality being indicative of the usability of the pulmonary image to be assessed for detecting lung nodules. Since a pulmonary image shows lung vessels with many different vessel sizes and with many different image values, which cover the respective ranges of potential lung nodules generally very well, the image quality determination based on the different pulmonary images with different degrees of smoothing allows for a reliable assessment of the pulmonary image's usability for detecting lung nodules.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: May 23, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rafael Wiemker, Tanja Nordhoff, Thomas Buelow, Axel Saalbach, Tobias Klinder, Tom Brosch, Tim Philipp Harder, Karsten Sommer
  • Publication number: 20230144823
    Abstract: The invention refers to an apparatus (110) for generating an augmented image comprising a) a base image providing unit (111), wherein the base image is generated based on a combination of spectral image data, b) a contrast image providing unit (112), wherein the contrast image is generated based on a different combination of the spectral image data, c) a degree of saliency determination unit (113), wherein the degree of saliency is indicative of a difference between an image value of a voxel of the contrast image and an image value of a corresponding voxel of a predetermined template image, and d) an augmented image generation unit (114) for generating an augmented base image of the object by augmenting voxels of the base image based on the degree of saliency. The invention allows to provide the augmented base image with an improved image quality and information content.
    Type: Application
    Filed: April 6, 2021
    Publication date: May 11, 2023
    Inventors: RAFAEL WIEMKER, LIRAN GOSHEN, JÖRG SABCZYNSKI, TOBIAS KLINDER
  • Publication number: 20230133142
    Abstract: A respiration monitoring device comprises an electronic controller configured to: receive an audio signal that is acoustically coupled with an airway of a patient receiving mechanical ventilation therapy from a mechanical ventilator; map the audio signal to one or more lung disease or injury condition categories; and at least one of: display the mapped one or more lung disease or injury condition categories on a display device; and determine a recommended adjustment to one or more parameters of the mechanical ventilation therapy delivered to the patient based at least on the mapped lung disease or injury condition categories and displaying the recommended adjustment on the display device.
    Type: Application
    Filed: October 5, 2022
    Publication date: May 4, 2023
    Inventors: Rafael Wiemker, Joerg Sabczynski, Thomas Koehler, Cornelis Petrus Hendriks, Roberto Buizza, Jaap Roger Haartsen, Stefan Winter, Michael Polkey, Rita Priori, Nataly Wieberneit, Kiran Hamilton J. Dellimore
  • Publication number: 20230118299
    Abstract: An apparatus (10) for assessing radiologist performance includes at least one electronic processor (20) programmed to: during reading sessions in which a user is logged into a user interface (UI) (27), present (98) medical imaging examinations (31) via the UI, receive examination reports on the presented medical imaging examinations via the UI, and file the examination reports; and perform a tracking method (102, 202) including at least one of: (i) computing (204) concurrence scores (34) quantifying concurrence between clinical findings contained in the examination reports and corresponding computer-generated clinical findings for the presented medical imaging examinations which are generated by a computer aided diagnostic (CAD) process miming as a background process during the reading sessions; and/or (ii) determining (208) reading times (38) for the presented medical imaging examinations wherein the reading time for each presented medical imaging examination is the time interval between a start of the prese
    Type: Application
    Filed: March 4, 2021
    Publication date: April 20, 2023
    Inventors: Tobias KLINDER, Xin WANG, Tanja NORDHOFF, Yuechen QIAN, Vadiraj krishnamurthy HOMBAL, Eran RUBENS, Sandeep Madhukar DALAL, Axel SAALBACH, Rafael WIEMKER
  • Publication number: 20230107737
    Abstract: A mechanical ventilation device comprising at least one electronic controller is configured to receive images of lungs of a patient undergoing mechanical ventilation therapy with a mechanical ventilator, the images being acquired over time and having timestamps; process the images to generate timeline images at corresponding discrete time points; and display a timeline of the timeline images on a display device.
    Type: Application
    Filed: September 6, 2022
    Publication date: April 6, 2023
    Inventors: Rafael Wiemker, Joerg Sabczynski, Thomas Koehler, Cornelis Petrus Hendriks, Roberto Buizza, Jaap Roger Haartsen, Stefan Winter, Michael Polkey, Rita Priori, Nataly Wieberneit