Patents by Inventor Raghunandan Makaram

Raghunandan Makaram has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180365438
    Abstract: A processor implementing techniques for supporting configurable security levels for memory address ranges is disclosed. In one embodiment, the processor includes a processing core a memory controller, operatively coupled to the processing core, to access data in an off-chip memory and a memory encryption engine (MEE) operatively coupled to the memory controller. The MEE is to responsive to detecting a memory access operation with respect to a memory location identified by a memory address within a memory address range associated with the off-chip memory, identify a security level indicator associated with the memory location based on a value stored on a security range register. The MEE is further to access at least a portion of a data item associated with the memory address range of the off-chip memory in view of the security level indicator.
    Type: Application
    Filed: April 5, 2018
    Publication date: December 20, 2018
    Inventors: Binata Bhattacharyya, Raghunandan Makaram, Amy L. Santoni, George Z. Chrysos, Simon P. Johnson, Brian S. Morris, Francis X. McKeen
  • Patent number: 10158478
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: December 18, 2018
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G Dixon, Srinivas Chennupaty, Michael E Kounavis
  • Publication number: 20180270068
    Abstract: The present disclosure provides confidential verification for FPGA code. Confidential verification for FPGA code can include receiving the policy from a cloud service provider (CSP) computing device, wherein the policy comprises a plurality of policy requirements used to determine whether to configure the FPGA using the code, receiving the code and the code encryption key from the user computing device, determining whether the code fulfills the plurality of policy requirements, and when the code fulfills the plurality of policy requirements encrypting and integrity protect the code using the code encryption key and providing the encrypted and integrity protected code to an accelerator loader to configure the FPGA using the code.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 20, 2018
    Applicant: INTEL CORPORATION
    Inventors: Eric Innis, Raghunandan Makaram, TING Lu
  • Publication number: 20180239713
    Abstract: A processor for supporting secure memory intent is disclosed. The processor of the disclosure includes a memory execution unit to access memory and a processor core coupled to the memory execution unit. The processor core is to receive a request to access a convertible page of the memory. In response to the request, the processor core to determine an intent for the convertible page in view of a page table entry (PTE) corresponding to the convertible page. The intent indicates whether the convertible page is to be accessed as at least one of a secure page or a non-secure page.
    Type: Application
    Filed: January 3, 2018
    Publication date: August 23, 2018
    Inventors: Krystof C. Zmudzinski, Siddhartha Chhabra, Uday R. Savagaonkar, Simon P. Johnson, Rebekah M. Leslie-Hurd, Francis X. McKeen, Gilbert Neiger, Raghunandan Makaram, Carlos V. Rozas, Amy L. Santoni, Vincent R. Scarlata, Vedvyas Shanbhogue, Ilya Alexandrovich, Ittai Anati, Wesley H. Smith, Michael Goldsmith
  • Patent number: 10031861
    Abstract: A server, processing device and/or processor includes a processing core and a memory controller, operatively coupled to the processing core, to access data in an off-chip memory. A memory encryption engine (MEE) may be operatively coupled to the memory controller and the off-chip memory. The MEE may store non-MEE metadata bits within a modified version line corresponding to ones of a plurality of data lines stored in a protected region of the off-chip memory, compute an embedded message authentication code (eMAC) using the modified version line, and detect an attempt to modify one of the non-MEE metadata bits by using the eMAC within a MEE tree walk to authenticate access to the plurality of data lines. The non-MEE metadata bits may store coherence bits that track changes to a cache line in a remote socket, poison bits that track error containment within the data lines, and possibly other metadata bits.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: July 24, 2018
    Assignee: Intel Corporation
    Inventors: Siddhartha Chhabra, Binata Bhattacharyya, Raghunandan Makaram, Brian S. Morris
  • Patent number: 9959418
    Abstract: A processor implementing techniques for supporting configurable security levels for memory address ranges is disclosed. In one embodiment, the processor includes a processing core a memory controller, operatively coupled to the processing core, to access data in an off-chip memory and a memory encryption engine (MEE) operatively coupled to the memory controller. The MEE is to responsive to detecting a memory access operation with respect to a memory location identified by a memory address within a memory address range associated with the off-chip memory, identify a security level indicator associated with the memory location based on a value stored on a security range register. The MEE is further to access at least a portion of a data item associated with the memory address range of the off-chip memory in view of the security level indicator.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: May 1, 2018
    Assignee: Intel Corporation
    Inventors: Binata Bhattacharyya, Raghunandan Makaram, Amy L. Santoni, George Z. Chrysos, Simon P. Johnson, Brian S. Morris, Francis X. McKeen
  • Publication number: 20180091554
    Abstract: An example method for remapping a group of system registers. The method may include receiving, by a secure access control mechanism, a request to remap one of a group of system registers from an association with a first access policy group to an association with a second access policy group. The method may include storing the remapping array at a memory of the secure access control mechanism, where a first value stored in a first entry of the remapping array maps the one of the group of system registers to the second access policy group. The method may include remapping, by the secure access control mechanism, the one of a group of system registers from the association with the first access policy group to the association with the second access policy group using the remapping array.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 29, 2018
    Inventors: Nagaraju N. Kodalapura, Vladimir Beker, Raghunandan Makaram
  • Patent number: 9875189
    Abstract: A processor for supporting secure memory intent is disclosed. The processor of the disclosure includes a memory execution unit to access memory and a processor core coupled to the memory execution unit. The processor core is to receive a request to access a convertible page of the memory. In response to the request, the processor core to determine an intent for the convertible page in view of a page table entry (PTE) corresponding to the convertible page. The intent indicates whether the convertible page is to be accessed as at least one of a secure page or a non-secure page.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: January 23, 2018
    Assignee: Intel Corporation
    Inventors: Krystof C. Zmudzinski, Siddhartha Chhabra, Uday R. Savagaonkar, Simon P. Johnson, Rebekah M. Leslie-Hurd, Francis X. McKeen, Gilbert Neiger, Raghunandan Makaram, Carlos V. Rozas, Amy L. Santoni, Vincent R. Scarlata, Vedvyas Shanbhogue, Ilya Alexandrovich, Ittai Anati, Wesley H. Smith, Michael Goldsmith
  • Patent number: 9798641
    Abstract: Methods and apparatus to increase cloud availability and silicon isolation using secure enclaves. A compute platform is configured to host a compute domain in which a plurality of secure enclaves are implemented. In conjunction with creating and deploying secure enclaves, mapping information is generated that maps the secure enclaves to platform/CPU resources, such as Intellectual Property blocks (IP) belong to the secure enclaves. In response to platform error events caused by errant platform/CPU resources, the secure enclave(s) belonging to the errant platform/CPU are identified via the mapping information, and an interrupt is directed to that/those secure enclave(s). In response to the interrupt, a secure enclave may be configured to one or more of handle the error, pass information to another secure enclave, and teardown the enclave. The secure enclave may execute an interrupt service routine that causes the errant platform/CPU resource to reset without resetting the entire platform or CPU, as applicable.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: October 24, 2017
    Assignee: Intel Corporation
    Inventors: Robert C. Swanson, Theodros Yigzaw, Eswaramoorthi Nallusamy, Raghunandan Makaram, Vincent J. Zimmer
  • Patent number: 9767044
    Abstract: Secure memory repartitioning technologies are described. A processor includes a processor core and a memory controller coupled between the processor core and main memory. The main memory includes a memory range including a section of convertible pages that are convertible to secure pages or non-secure pages. The processor core, in response to a page conversion instruction, is to determine from the instruction a convertible page in the memory range to be converted and convert the convertible page to be at least one of a secure page or a non-secure page. The memory range may also include a hardware reserved section that is convertible in response to a section conversion instruction.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: September 19, 2017
    Assignee: Intel Corporation
    Inventors: Siddhartha Chhabra, Uday R. Savagaonkar, Michael A. Goldsmith, Simon P. Johnson, Rebekah M. Leslie-Hurd, Francis X. McKeen, Gilbert Neiger, Raghunandan Makaram, Carlos V. Rozas, Amy L. Santoni, Vincent R. Scarlata, Vedvyas Shanbhogue, Wesley H. Smith, Ittai Anati, Ilya Alexandrovich
  • Patent number: 9760155
    Abstract: In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: September 12, 2017
    Assignee: Intel Corporation
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Scott P. Bobholz, Raghunandan Makaram, Vivek Garg
  • Publication number: 20170228233
    Abstract: A processor of an aspect includes a decode unit to decode a user-level suspend thread instruction that is to indicate a first alternate state. The processor also includes an execution unit coupled with the decode unit. The execution unit is to perform the instruction at a user privilege level. The execution unit in response to the instruction, is to: (a) suspend execution of a user-level thread, from which the instruction is to have been received; (b) transition a logical processor, on which the user-level thread was to have been running, to the indicated first alternate state; and (c) resume the execution of the user-level thread, when the logical processor is in the indicated first alternate state, with a latency that is to be less than half a latency that execution of a thread can be resumed when the logical processor is in a halt processor power state.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 10, 2017
    Applicant: INTEL CORPORATION
    Inventors: Michael Mishaeli, Jason W. Brandt, Gilbert Neiger, Asit K. Mallick, Rajesh M. Sankaran, Raghunandan Makaram, Benjamin C. Chaffin, James B. Crossland, H. Peter Anvin
  • Publication number: 20170177457
    Abstract: Methods and apparatus to increase cloud availability and silicon isolation using secure enclaves. A compute platform is configured to host a compute domain in which a plurality of secure enclaves are implemented. In conjunction with creating and deploying secure enclaves, mapping information is generated that maps the secure enclaves to platform/CPU resources, such as Intellectual Property blocks (IP) belong to the secure enclaves. In response to platform error events caused by errant platform/CPU resources, the secure enclave(s) belonging to the errant platform/CPU are identified via the mapping information, and an interrupt is directed to that/those secure enclave(s). In response to the interrupt, a secure enclave may be configured to one or more of handle the error, pass information to another secure enclave, and teardown the enclave. The secure enclave may execute an interrupt service routine that causes the errant platform/CPU resource to reset without resetting the entire platform or CPU, as applicable.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: ROBERT C. SWANSON, THEODROS YIGZAW, ESWARAMOORTHI NALLUSAMY, RAGHUNANDAN MAKARAM, VINCENT J. ZIMMER
  • Patent number: 9654281
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 16, 2017
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G. Dixon, Srinivas Chennupaty, Michael E. Kounavis
  • Patent number: 9654282
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 16, 2017
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G. Dixon, Srinivas Chennupaty, Michael E. Kounavis
  • Patent number: 9647831
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 9, 2017
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G. Dixon, Srinivas Chennupaty, Michael E. Kounavis
  • Patent number: 9641320
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 2, 2017
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G. Dixon, Srinivas Chennupaty, Michael E. Kounavis
  • Patent number: 9641319
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 2, 2017
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G. Dixon, Srinivas Chennupaty, Michael E. Kounavis
  • Patent number: 9634830
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: April 25, 2017
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G. Dixon, Srinivas Chennupaty, Michael E. Kounavis
  • Patent number: 9634828
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: April 25, 2017
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G Dixon, Srinivas Chennupaty, Michael E Kounavis