Patents by Inventor Raghunathan Rengaswamy

Raghunathan Rengaswamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9779189
    Abstract: A computerized method for designing a discrete droplet microfluidic system: (a) provides an initial set of droplet based networks; (b) codes each droplet based network into a data structure such that all the data structures form a current set of data structures; (c) creates new data structures by performing one or more genetic operators on the current set of data structures; (d) adds new data structures to the current set of data structures; (e) creates a new set of data structures that satisfies one or more design parameters; (f) replaces the current set of data structures with the new set of data structures; (g) repeats steps (c), (d), (e) and (f) until the new set of data structures has been created a third number of times; and (h) displays/outputs the current set of data structures as possible designs for the discrete droplet microfluidic system to one or more output devices.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: October 3, 2017
    Assignee: Texas Tech University System
    Inventors: Jeevan Maddala, Raghunathan Rengaswamy
  • Publication number: 20160154908
    Abstract: A computerized method for designing a discrete droplet microfluidic system: (a) provides an initial set of droplet based networks; (b) codes each droplet based network into a data structure such that all the data structures form a current set of data structures; (c) creates new data structures by performing one or more genetic operators on the current set of data structures; (d) adds new data structures to the current set of data structures; (e) creates a new set of data structures that satisfies one or more design parameters; (f) replaces the current set of data structures with the new set of data structures; (g) repeats steps (c), (d), (e) and (f) until the new set of data structures has been created a third number of times; and (h) displays/outputs the current set of data structures as possible designs for the discrete droplet microfluidic system to one or more output devices.
    Type: Application
    Filed: July 11, 2014
    Publication date: June 2, 2016
    Inventors: Jeevan Maddala, Raghunathan Rengaswamy
  • Patent number: 7797082
    Abstract: An apparatus, method, and computer program for stiction compensation in a process control system are provided. A determination is made as to whether a valve is suffering from stiction. A control signal provided to the valve is adjusted in order to at least partially compensate for the stiction suffered by the valve. Adjusting the control signal could include (i) adjusting the control signal to cause the valve to move into a steady-state position and (ii) adjusting the control signal to cause the valve to remain in the steady-state position. Adjusting the control signal to cause the valve to move into the steady-state position could include (a) adjusting the control signal to cause the valve to move from a current position into a new position and (b) adjusting the control signal to cause the valve to move from the new position into the steady-state position.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: September 14, 2010
    Assignee: Honeywell International Inc.
    Inventors: Ranganathan Srinivasan, Raghunathan Rengaswamy
  • Publication number: 20070088446
    Abstract: An apparatus, method, and computer program for stiction compensation in a process control system are provided. A determination is made as to whether a valve is suffering from stiction. A control signal provided to the valve is adjusted in order to at least partially compensate for the stiction suffered by the valve. Adjusting the control signal could include (i) adjusting the control signal to cause the valve to move into a steady-state position and (ii) adjusting the control signal to cause the valve to remain in the steady-state position. Adjusting the control signal to cause the valve to move into the steady-state position could include (a) adjusting the control signal to cause the valve to move from a current position into a new position and (b) adjusting the control signal to cause the valve to move from the new position into the steady-state position.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 19, 2007
    Applicant: Honeywell International Inc.
    Inventors: Ranganathan Srinivasan, Raghunathan Rengaswamy