Patents by Inventor Rahima K. Mohammed

Rahima K. Mohammed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12213288
    Abstract: An apparatus is described. The apparatus includes a liquid cooling system having multiple heat-exchangers and multiple valves. The multiple valves are to enable/disable participation of individual ones of the heat-exchangers within the liquid cooling system. The apparatus includes an information keeping device to store information that correlates a number of the multiple heat exchangers to be enabled to realize one or more semiconductor chips' target temperature for a power consumption of the one or more semiconductor chips for a plurality of combinations of target temperature and power consumption.
    Type: Grant
    Filed: December 26, 2020
    Date of Patent: January 28, 2025
    Assignee: Intel Corporation
    Inventors: Prabhakar Subrahmanyam, Arun Krishnamoorthy, Victor Polyanko, Ying-Feng Pang, Yi Xia, Pooya Tadayon, Muhammad Ahmad, Rahima K. Mohammed
  • Patent number: 10198333
    Abstract: An apparatus and method is described herein for providing a test, validation, and debug architecture. At a target or base level, hardware hooks (Design for Test or DFx) are designed into and integrated with silicon parts. A controller may provide abstracted access to such hooks, such as through an abstraction layer that abstracts low level details of the hardware DFx. In addition, the abstraction layer through an interface, such as APIs, provides services, routines, and data structures to higher-level software/presentation layers, which are able to collect test data for validation and debug of a unit/platform under test. Moreover, the architecture potentially provides tiered (multiple levels of) secure access to the test architecture. Additionally, physical access to the test architecture for a platform may be simplified through use of a unified, bi-directional test access port, while also potentially allowing remote access to perform remote test and debug of a part/platform under test.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: February 5, 2019
    Assignee: INTEL CORPORATION
    Inventors: Mark B. Trobough, Keshavan K. Tiruvallur, Chinna B. Prudvi, Christian E. Iovin, David W. Grawrock, Jay J. Nejedlo, Ashok N. Kabadi, Travis K. Goff, Evan J. Halprin, Kapila B. Udawatta, Jiun Long Foo, Wee Hoo Cheah, Vui Yong Liew, Selvakumar Raja Gopal, Yuen Tat Lee, Samie B. Samaan, Kip C. Killpack, Neil Dobler, Nagib Z. Hakim, Brian Meyer, William H. Penner, John L. Baudrexl, Russell J. Wunderlich, James J. Grealish, Kyle Markley, Timothy S. Storey, Loren J. McConnell, Lyle E. Cool, Mukesh Kataria, Rahima K. Mohammed, Tieyu Zheng, Yi Amy Xia, Ridvan A. Sahan, Arun R. Ramadorai, Priyadarsan Patra, Edwin E. Parks, Abhijit Davare, Padmakumar Gopal, Bruce Querbach, Hermann W. Gartler, Keith Drescher, Sanjay S. Salem, David C. Florey
  • Publication number: 20150127983
    Abstract: An apparatus and method is described herein for providing a test, validation, and debug architecture. At a target or base level, hardware (Design for Test or DFx) are designed into and integrated with silicon parts. A controller may provide abstracted access to such hooks, such as through an abstraction layer that abstracts low level details of the hardware DFx. In addition, the abstraction layer through an interface, such as APIs, provides services, routines, and data structures to higher-level software/presentation layers, which are able to collect test data for validation and debug of a unit/platform under test. Moreover, the architecture potentially provides tiered (multiple levels of) secure access to the test architecture. Additionally, physical access to the test architecture for a platform may be simplified through use of a unified, bi-directional test access port, while also potentially allowing remote access to perform remote test and de-bug of a part/platform under test.
    Type: Application
    Filed: December 23, 2010
    Publication date: May 7, 2015
    Applicant: INTEL CORPORATION
    Inventors: Mark B. Trobough, Keshavan K. Tiruvallur, Chinna B. Prudvi, Christian E. Iovin, David W. Grawrock, Jay J. Nejedlo, Ashok N. Kabadi, Travis K. Goff, Evan J. Halprin, Kapila B. Udawatta, Jiun Long Foo, Wee Hoo Cheah, Vui Yong Liew, Selvakumar Raja Gopal, Yuen Tat Lee, Samie B. Samaan, Kip C. Killpack, Neil Dobler, Nagib Z. Hakim, Briar Meyer, William H. Penner, John L. Baudrexl, Russell J. Wunderlich, James J. Grealish, Kyle Markley, Timothy S. Storey, Loren J. McConnell, Lyle E. Cool, Mukesh Kataria, Rahima K. Mohammed, Tieyu Zheng, Yi Amy Xia, Ridvan A. Sahan, Arun R. Ramadorai, Priyadarsan Patra, Edwin E. Parks, Abhijit Davare, Padmakumar Gopal, Bruce Querbach, Hermann W. Gartler, Keith Drescher, Sanjay S. Salem, David C. Florey
  • Patent number: 8382503
    Abstract: The present description relates to the field of microelectronic device retention mechanisms and, more particularly, to a quick release retention mechanism including a base plate, a load plate and a biasing mechanism adapted to apply a desired load and to allow rapid insertion and extraction of microelectronic devices from sockets.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: February 26, 2013
    Assignee: Intel Corporation
    Inventors: Aslam H. Haswarey, Mustafa H. Haswarey, Ridvan A. Sahan, Rahima K. Mohammed
  • Publication number: 20120156913
    Abstract: The present description relates to the field of microelectronic device retention mechanisms and, more particularly, to a quick release retention mechanism including a base plate, a load plate and a biasing mechanism adapted to apply a desired load and to allow rapid insertion and extraction of microelectronic devices from sockets.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 21, 2012
    Inventors: Aslam H. Haswarey, Mustafa H. Haswarey, Ridvan A. Sahan, Rahima K. Mohammed