Patents by Inventor Rahul Katdare

Rahul Katdare has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885732
    Abstract: A classification training method for training classifiers adapted to identify specific mutations associated with different cancer including identifying driver mutations. First cells from mutation cell lines derived from conditions having the number of driver mutations are acquired and 3D image feature data from the number of first cells is identified. 3D cell imaging data from the number of first cells and from other malignant cells is generated, where cell imaging data includes a number of first individual cell images. A second set of 3D cell imaging data is generated from a set of normal cells where the number of driver mutations are expected to occur, where the second set of cell imaging data includes second individual cell images. Supervised learning is conducted based on cell line status as ground truth to generate a classifier.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: January 30, 2024
    Assignee: VisionGate, Inc.
    Inventors: Michael G. Meyer, Daniel J. Sussman, Rahul Katdare, Laimonas Kelbauskas, Alan C. Nelson, Randall Mastrangelo
  • Publication number: 20230289407
    Abstract: A method for a system and method for morphometric detection of malignancy associated change (MAC) is disclosed including the acts of obtaining a sample; imaging cells to produce 3D cell images for each cell; measuring a plurality of different structural biosignatures for each cell from its 3D cell image to produce feature data; analyzing the feature data by first using cancer case status as ground truth to supervise development of a classifier to test the degree to which the features discriminate between cells from normal or cancer patients; using the analyzed feature data to develop classifiers including, a first classifier to discriminate normal squamous cells from normal and cancer patients, a second classifier to discriminate normal macrophages from normal and cancer patients, and a third classifier to discriminate normal bronchial columnar cells from normal and cancer patients.
    Type: Application
    Filed: December 12, 2022
    Publication date: September 14, 2023
    Inventors: Michael G. Meyer, Laimonas Kelbauskas, Rahul Katdare, Daniel J. Sussman, Timothy Bell, Alan C. Nelson
  • Publication number: 20230050322
    Abstract: A classification training method for training classifiers adapted to identify specific mutations associated with different cancer including identifying driver mutations. First cells from mutation cell lines derived from conditions having the number of driver mutations are acquired and 3D image feature data from the number of first cells is identified. 3D cell imaging data from the number of first cells and from other malignant cells is generated, where cell imaging data includes a number of first individual cell images. A second set of 3D cell imaging data is generated from a set of normal cells where the number of driver mutations are expected to occur, where the second set of cell imaging data includes second individual cell images. Supervised learning is conducted based on cell line status as ground truth to generate a classifier.
    Type: Application
    Filed: October 18, 2022
    Publication date: February 16, 2023
    Inventors: Michael G. Meyer, Daniel J. Sussman, Rahul Katdare, Laimonis Kelbauskas, Alan C. Nelson, Randall Mastrangelo
  • Patent number: 11551043
    Abstract: A method for a system and method for morphometric detection of malignancy associated change (MAC) is disclosed including the acts of obtaining a sample; imaging cells to produce 3D cell images for each cell; measuring a plurality of different structural biosignatures for each cell from its 3D cell image to produce feature data; analyzing the feature data by first using cancer case status as ground truth to supervise development of a classifier to test the degree to which the features discriminate between cells from normal or cancer patients; using the analyzed feature data to develop classifiers including, a first classifier to discriminate normal squamous cells from normal and cancer patients, a second classifier to discriminate normal macrophages from normal and cancer patients, and a third classifier to discriminate normal bronchial columnar cells from normal and cancer patients.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: January 10, 2023
    Assignee: VISIONGATE, INC.
    Inventors: Michael G. Meyer, Laimonas Kelbauskas, Rahul Katdare, Daniel J. Sussman, Timothy Bell, Alan C. Nelson
  • Patent number: 11545237
    Abstract: A classification training method for training classifiers adapted to identify specific mutations associated with different cancer including identifying driver mutations. First cells from mutation cell lines derived from conditions having the number of driver mutations are acquired and 3D image feature data from the number of first cells is identified. 3D cell imaging data from the number of first cells and from other malignant cells is generated, where cell imaging data includes a number of first individual cell images. A second set of 3D cell imaging data is generated from a set of normal cells where the number of driver mutations are expected to occur, where the second set of cell imaging data includes second individual cell images. Supervised learning is conducted based on cell line status as ground truth to generate a classifier.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: January 3, 2023
    Assignee: VISIONGATE, INC.
    Inventors: Michael G. Meyer, Daniel J. Sussman, Rahul Katdare, Laimonas Kelbauskas, Alan C. Nelson, Randall Mastrangelo
  • Publication number: 20210210169
    Abstract: A classification training method for training classifiers adapted to identify specific mutations associated with different cancer including identifying driver mutations. First cells from mutation cell lines derived from conditions having the number of driver mutations are acquired and 3D image feature data from the number of first cells is identified. 3D cell imaging data from the number of first cells and from other malignant cells is generated, where cell imaging data includes a number of first individual cell images. A second set of 3D cell imaging data is generated from a set of normal cells where the number of driver mutations are expected to occur, where the second set of cell imaging data includes second individual cell images. Supervised learning is conducted based on cell line status as ground truth to generate a classifier.
    Type: Application
    Filed: September 26, 2018
    Publication date: July 8, 2021
    Applicant: VISIONGATE, INC.
    Inventors: Michael G. MEYER, Daniel J. SUSSMAN, Rahul KATDARE, Laimonis KELBAUSKAS, Alan C. NELSON, Randall MASTRANGELO
  • Publication number: 20210049425
    Abstract: A method for a system and method for morphometric detection of malignancy associated change (MAC) is disclosed including the acts of obtaining a sample; imaging cells to produce 3D cell images for each cell; measuring a plurality of different structural biosignatures for each cell from its 3D cell image to produce feature data; analyzing the feature data by first using cancer case status as ground truth to supervise development of a classifier to test the degree to which the features discriminate between cells from normal or cancer patients; using the analyzed feature data to develop classifiers including, a first classifier to discriminate normal squamous cells from normal and cancer patients, a second classifier to discriminate normal macrophages from normal and cancer patients, and a third classifier to discriminate normal bronchial columnar cells from normal and cancer patients.
    Type: Application
    Filed: February 28, 2019
    Publication date: February 18, 2021
    Applicant: VISIONGATE, INC.
    Inventors: Michael G. Meyer, Laimonis Kelbauskas, Rahul Katdare, Daniel J. Sussman, Timothy Bell, Alan C. Nelson
  • Patent number: 9594072
    Abstract: A cytological analysis test for 3D cell classification from a specimen. The method includes isolating and preserving a cell from the specimen and enriching the cell before embedding the enriched cell into an optical medium. The embedded cell is injected into a capillary tube where pressure is applied until the cell appears in a field of view of a pseudo-projection viewing subsystem to acquire a pseudo-projection image. The capillary tube rotates about a tube axis to provide a set of pseudo-projection images for each embedded cell which are reconstructed to produce a set of 3D cell reconstructions. Reference cells are classified and enumerated and a second cell classifier detects target cells. An adequacy classifier compares the number of reference cells against a threshold value of enumerated reference cells to determine specimen adequacy.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: March 14, 2017
    Assignee: VISIONGATE, INC.
    Inventors: Michael G. Meyer, Rahul Katdare, Chris Presley, Timothy Bell
  • Publication number: 20170003267
    Abstract: A cytological analysis test for 3D cell classification from a specimen. The method includes isolating and preserving a cell from the specimen and enriching the cell before embedding the enriched cell into an optical medium. The embedded cell is injected into a capillary tube where pressure is applied until the cell appears in a field of view of a pseudo-projection viewing subsystem to acquire a pseudo-projection image. The capillary tube rotates about a tube axis to provide a set of pseudo-projection images for each embedded cell which are reconstructed to produce a set of 3D cell reconstructions. Reference cells are classified and enumerated and a second cell classifier detects target cells. An adequacy classifier compares the number of reference cells against a threshold value of enumerated reference cells to determine specimen adequacy.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 5, 2017
    Applicant: VISIONGATE, INC.
    Inventors: Michael G. Meyer, Rahul Katdare, Chris Presley, Timothy Bell
  • Patent number: 8155420
    Abstract: A system and method for detecting poor quality images in an optical tomography system includes an acquisition apparatus for acquiring a set of pseudo-projection images of an object having a center of mass, where each of the set of pseudo-projection images is acquired at a different angle of view. A reconstruction apparatus is coupled to receive the pseudo-projection images, for reconstruction of the pseudo-projection images into 3D reconstruction images. A quality apparatus is coupled to receive the 3D reconstruction images and operates to detect of selected features that characterize poor quality reconstructions.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: April 10, 2012
    Assignee: Visiongate, Inc
    Inventors: Michael G. Meyer, Rahul Katdare, David Ethan Steinhauer, J. Richard Rahn
  • Publication number: 20100296713
    Abstract: A system and method for detecting poor quality images in an optical tomography system includes an acquisition apparatus for acquiring a set of pseudo-projection images of an object having a center of mass, where each of the set of pseudo-projection images is acquired at a different angle of view. A reconstruction apparatus is coupled to receive the pseudo-projection images, for reconstruction of the pseudo-projection images into 3D reconstruction images. A quality apparatus is coupled to receive the 3D reconstruction images and operates to detect of selected features that characterize poor quality reconstructions.
    Type: Application
    Filed: May 21, 2009
    Publication date: November 25, 2010
    Applicant: VISIONGATE, INC.
    Inventors: Michael G. Meyer, Rahul Katdare, David E. Steinhauer, J. Richard Rahn