Patents by Inventor Rahul Misra

Rahul Misra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200397900
    Abstract: The present disclosure relates to novel radiation-triggered controlled release drug compositions, and methods to make and use the radiation-triggered controlled release drug compositions. The radiation-triggered controlled drug release nanoparticle formulations may be used to achieve maximum bioavailability and minimum adverse effects of the chemo drugs in chemo radio combination therapy treatment of locally advanced solid tumors.
    Type: Application
    Filed: September 7, 2018
    Publication date: December 24, 2020
    Applicant: Purdue Research Foundation
    Inventors: You-Yeon WON, Jaewon LEE, Rahul MISRA, Vincenzo PIZZUTI, Kaustabh SARKAR
  • Publication number: 20170267853
    Abstract: A method of using metallized and nonmetallized nanostructured chemicals as surface and volume modification agents within polymers and on the surfaces of nano and macroscopic particulates and fillers. Because of their 0.5 nm-3.0 nm size, nanostructured chemicals can be utilized to greatly increase surface area, improve compatibility, and promote lubricity between surfaces at a length scale not previously attainable.
    Type: Application
    Filed: February 22, 2016
    Publication date: September 21, 2017
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Marion R. Blue, Paul Wheeler, Rahul Misra, Sarah Morgan
  • Publication number: 20160160082
    Abstract: This Invention relates to an inkjet printable article of polymeric surface coated with an amphiphilic protein, such as a hydrophobin, to enhance the quality of images printed thereon and to a method of coating of the polymeric surface with the amphiphilic protein with a proviso that the water contact angle of the polymeric surface ?80° at 25° C. The coated amphiphilic protein functions as an “ink receiving layer”.
    Type: Application
    Filed: June 18, 2015
    Publication date: June 9, 2016
    Inventors: ANURADHA MISRA, RAHUL MISRA, MANOHAR REDDY ESUKAPALLI
  • Patent number: 9267023
    Abstract: A method of using metallized and nonmetallized nanostructured chemicals as surface and volume modification agents within polymers and on the surfaces of nano and macroscopic particulates and fillers. Because of their 0.5 nm-3.0 nm size, nanostructured chemicals can be utilized to greatly increase surface area, improve compatibility, and promote lubricity between surfaces at a length scale not previously attainable.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: February 23, 2016
    Assignee: Hybrid Plastics, Inc.
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Marion R. Blue, Paul Wheeler, Rahul Misra, Sarah Morgan
  • Publication number: 20140221544
    Abstract: A method of using metallized and nonmetallized nanostructured chemicals as surface and volume modification agents within polymers and on the surfaces of nano and macroscopic particulates and fillers. Because of their 0.5 nm-3.0 nm size, nanostructured chemicals can be utilized to greatly increase surface area, improve compatibility, and promote lubricity between surfaces at a length scale not previously attainable.
    Type: Application
    Filed: March 25, 2014
    Publication date: August 7, 2014
    Applicant: Hybrid Plastics, Inc.
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Marion R. Blue, Paul Wheeler, Rahul Misra, Sarah Morgan
  • Patent number: 8680215
    Abstract: A method of using metallized and nonmetallized nanostructured chemicals as surface and volume modification agents within polymers and on the surfaces of nano and macroscopic particulates and fillers. Because of their 0.5 nm-3.0 nm size, nanostructured chemicals can be utilized to greatly increase surface area, improve compatibility, and promote lubricity between surfaces at a length scale not previously attainable.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: March 25, 2014
    Assignee: Hybrid Plastics, Inc.
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Marion R. Blue, Paul Wheeler, Rahul Misra, Sarah Morgan
  • Publication number: 20100305282
    Abstract: A method of using metallized and nonmetallized nanostructured chemicals as surface and volume modification agents within polymers and on the surfaces of nano and macroscopic particulates and fillers. Because of their 0.5 nm-3.0 nm size, nanostructured chemicals can be utilized to greatly increase surface area, improve compatibility, and promote lubricity between surfaces at a length scale not previously attainable.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 2, 2010
    Applicant: Hybrid Plastics, Inc.
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Marion R. Blue, Paul Wheeler, Rahul Misra, Sarah Morgan
  • Patent number: 7723415
    Abstract: A method of using metallized and nonmetallized nanostructured chemicals as surface and volume modification agents within polymers and on the surfaces of nano and macroscopic particulates and fillers. Because of their 0.5 nm-3.0 nm size, nanostructured chemicals can be utilized to greatly increase surface area, improve compatibility, and promote lubricity between surfaces at a length scale not previously attainable.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: May 25, 2010
    Assignee: Hybrid Plastics, Inc.
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Marion R. Blue, Paul Wheeler, Rahul Misra, Sarah Morgan
  • Publication number: 20070225434
    Abstract: A method of using metallized and nonmetallized nanostructured chemicals as surface and volume modification agents within polymers and on the surfaces of nano and macroscopic particulates and fillers. Because of their 0.5 nm-3.0 nm size, nanostructured chemicals can be utilized to greatly increase surface area, improve compatibility, and promote lubricity between surfaces at a length scale not previously attainable.
    Type: Application
    Filed: December 18, 2006
    Publication date: September 27, 2007
    Inventors: Joseph Lichtenhan, Xuan Fu, Marion Blue, Paul Wheeler, Rahul Misra, Sarah Morgan