Patents by Inventor Raia Thais Hadsell

Raia Thais Hadsell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200090048
    Abstract: A method is proposed for training a multitask computer system, such as a multitask neural network system. The system comprises a set of trainable workers and a shared module. The trainable workers and shared module are trained on a plurality of different tasks, such that each worker learns to perform a corresponding one of the tasks according to a respective task policy, and said shared policy network learns a multitask policy which represents common behavior for the tasks. The coordinated training is performed by optimizing an objective function comprising, for each task: a reward term indicative of an expected reward earned by a worker in performing the corresponding task according to the task policy; and at least one entropy term which regularizes the distribution of the task policy towards the distribution of the multitask policy.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 19, 2020
    Inventors: Razvan Pascanu, Raia Thais Hadsell, Victor Constant Bapst, Wojciech Czarnecki, James Kirkpatrick, Yee Whye Teh, Nicolas Manfred Otto Heess
  • Patent number: 10572776
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: February 25, 2020
    Assignee: DeepMind Technologies Limited
    Inventors: Fabio Viola, Piotr Wojciech Mirowski, Andrea Banino, Razvan Pascanu, Hubert Josef Soyer, Andrew James Ballard, Sudarshan Kumaran, Raia Thais Hadsell, Laurent Sifre, Rostislav Goroshin, Koray Kavukcuoglu, Misha Man Ray Denil
  • Publication number: 20190346272
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for selecting actions to be performed by an agent interacting with an environment. In one aspect, a system comprises a grid cell neural network and an action selection neural network. The grid cell network is configured to: receive an input comprising data characterizing a velocity of the agent; process the input to generate a grid cell representation; and process the grid cell representation to generate an estimate of a position of the agent in the environment; the action selection neural network is configured to: receive an input comprising a grid cell representation and an observation characterizing a state of the environment; and process the input to generate an action selection network output.
    Type: Application
    Filed: May 9, 2019
    Publication date: November 14, 2019
    Inventors: Andrea Banino, Sudarshan Kumaran, Raia Thais Hadsell, Benigno Uria-Martinez
  • Publication number: 20190266449
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 29, 2019
    Inventors: Fabio Viola, Piotr Wojciech Mirowski, Andrea Banino, Razvan Pascanu, Hubert Josef Soyer, Andrew James Ballard, Sudarshan Kumaran, Raia Thais Hadsell, Laurent Sifre, Rostislav Goroshin, Koray Kavukcuoglu, Misha Man Ray Denil
  • Publication number: 20190232489
    Abstract: A system includes a neural network system implemented by one or more computers. The neural network system is configured to receive an observation characterizing a current state of a real-world environment being interacted with by a robotic agent to perform a robotic task and to process the observation to generate a policy output that defines an action to be performed by the robotic agent in response to the observation. The neural network system includes: (i) a sequence of deep neural networks (DNNs), in which the sequence of DNNs includes a simulation-trained DNN that has been trained on interactions of a simulated version of the robotic agent with a simulated version of the real-world environment to perform a simulated version of the robotic task, and (ii) a first robot-trained DNN that is configured to receive the observation and to process the observation to generate the policy output.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Inventors: Razvan Pascanu, Raia Thais Hadsell, Mel Vecerik, Thomas Rothoerl, Andrei-Alexandru Rusu, Nicolas Manfred Otto Heess
  • Publication number: 20190236482
    Abstract: A method of training a machine learning model having multiple parameters, in which the machine learning model has been trained on a first machine learning task to determine first values of the parameters of the machine learning model.
    Type: Application
    Filed: July 18, 2017
    Publication date: August 1, 2019
    Inventors: Guillaume Desjardins, Razvan Pascanu, Raia Thais Hadsell, James Kirkpatrick, Joel William Veness, Neil Charles Rabinowitz
  • Publication number: 20170337464
    Abstract: Methods and systems for performing a sequence of machine learning tasks. One system includes a sequence of deep neural networks (DNNs), including: a first DNN corresponding to a first machine learning task, wherein the first DNN comprises a first plurality of indexed layers, and each layer in the first plurality of indexed layers is configured to receive a respective layer input and process the layer input to generate a respective layer output; and one or more subsequent DNNs corresponding to one or more respective machine learning tasks, wherein each subsequent DNN comprises a respective plurality of indexed layers, and each layer in a respective plurality of indexed layers with index greater than one receives input from a preceding layer of the respective subsequent DNN, and one or more preceding layers of respective preceding DNNs, wherein a preceding layer is a layer whose index is one less than the current index.
    Type: Application
    Filed: December 30, 2016
    Publication date: November 23, 2017
    Inventors: Neil Charles Rabinowitz, Guillaume Desjardins, Andrei-Alexandru Rusu, Koray Kavukcuoglu, Raia Thais Hadsell, Razvan Pascanu, James Kirkpatrick, Hubert Josef Soyer