Patents by Inventor Raija H. MATERO

Raija H. MATERO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200010953
    Abstract: Methods are provided for selectively depositing a material on a first metal or metallic surface of a substrate relative to a second, dielectric surface of the substrate, or for selectively depositing metal oxides on a first metal oxide surface of a substrate relative to a second silicon oxide surface. The selectively deposited material can be, for example, a metal, metal oxide, metal nitride, metal silicide, metal carbide and/or dielectric material. In some embodiments a substrate comprising a first metal or metallic surface and a second dielectric surface is alternately and sequentially contacted with a first vapor-phase metal halide reactant and a second reactant. In some embodiments a substrate comprising a first metal oxide surface and a second silicon oxide surface is alternately and sequentially contacted with a first vapor phase metal fluoride or chloride reactant and water.
    Type: Application
    Filed: September 18, 2019
    Publication date: January 9, 2020
    Inventors: Suvi P. Haukka, Raija H. Matero, Elina Färm, Tom E. Blomberg
  • Patent number: 10456808
    Abstract: Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: October 29, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Suvi P. Haukka, Raija H. Matero, Eva Tois, Antti Niskanen, Marko Tuominen, Hannu Huotari, Viljami J. Pore, Ivo Raaijmakers
  • Patent number: 10443123
    Abstract: Methods are provided for dual selective deposition of a first material on a first surface of a substrate and a second material on a second, different surface of the same substrate. The selectively deposited materials may be, for example, metal, metal oxide, or dielectric materials.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: October 15, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Suvi P. Haukka, Raija H. Matero, Eva Tois, Antti Niskanen, Marko Tuominen, Hannu Huotari, Viljami J. Pore
  • Patent number: 10428421
    Abstract: Methods are provided for selectively depositing a material on a first metal or metallic surface of a substrate relative to a second, dielectric surface of the substrate, or for selectively depositing metal oxides on a first metal oxide surface of a substrate relative to a second silicon oxide surface. The selectively deposited material can be, for example, a metal, metal oxide, metal nitride, metal silicide, metal carbide and/or dielectric material. In some embodiments a substrate comprising a first metal or metallic surface and a second dielectric surface is alternately and sequentially contacted with a first vapor-phase metal halide reactant and a second reactant. In some embodiments a substrate comprising a first metal oxide surface and a second silicon oxide surface is alternately and sequentially contacted with a first vapor phase metal fluoride or chloride reactant and water.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: October 1, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Suvi P. Haukka, Raija H. Matero, Elina Färm, Tom E. Blomberg
  • Publication number: 20190100837
    Abstract: Methods are provided for dual selective deposition of a first material on a first surface of a substrate and a second material on a second, different surface of the same substrate. The selectively deposited materials may be, for example, metal, metal oxide, or dielectric materials.
    Type: Application
    Filed: August 10, 2018
    Publication date: April 4, 2019
    Inventors: Suvi P. Haukka, Raija H. Matero, Eva Tois, Antti Niskanen, Marko Tuominen, Hannu Huotari, Viljami J. Pore
  • Publication number: 20190103266
    Abstract: Antimony oxide thin films are deposited by atomic layer deposition using an antimony reactant and an oxygen source. Antimony reactants may include antimony halides, such as SbCl3, antimony alkylamines, and antimony alkoxides, such as Sb(OEt)3. The oxygen source may be, for example, ozone. In some embodiments the antimony oxide thin films are deposited in a batch reactor. The antimony oxide thin films may serve, for example, as etch stop layers or sacrificial layers.
    Type: Application
    Filed: August 20, 2018
    Publication date: April 4, 2019
    Inventors: Raija H. Matero, Linda Lindroos, Hessel Sprey, Jan Willem Maes, David de Roest, Dieter Pierreux, Kees van der Jeugd, Lucia D'Urzo, Tom E. Blomberg
  • Publication number: 20190027361
    Abstract: In some aspects, methods for forming a germanium thin film using a cyclical deposition process are provided. In some embodiments, the germanium thin film is formed on a substrate in a reaction chamber, and the process includes one or more deposition cycles of alternately and sequentially contacting the substrate with a vapor phase germanium precursor and a nitrogen reactant. In some embodiments, the process is repeated until a germanium thin film of desired thickness has been formed.
    Type: Application
    Filed: March 23, 2018
    Publication date: January 24, 2019
    Inventor: Raija H. Matero
  • Publication number: 20180243787
    Abstract: Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
    Type: Application
    Filed: January 23, 2018
    Publication date: August 30, 2018
    Inventors: Suvi P. Haukka, Raija H. Matero, Eva Tois, Antti Niskanen, Marko Tuominen, Hannu Huotari, Viljami J. Pore, Ivo Raaijmakers
  • Patent number: 10056249
    Abstract: Antimony oxide thin films are deposited by atomic layer deposition using an antimony reactant and an oxygen source. Antimony reactants may include antimony halides, such as SbCl3, antimony alkylamines, and antimony alkoxides, such as Sb(OEt)3. The oxygen source may be, for example, ozone. In some embodiments the antimony oxide thin films are deposited in a batch reactor. The antimony oxide thin films may serve, for example, as etch stop layers or sacrificial layers.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: August 21, 2018
    Assignee: ASM International N.V.
    Inventors: Raija H. Matero, Linda Lindroos, Hessel Sprey, Jan Willem Maes, David de Roest, Dieter Pierreux, Kees van der Jeugd, Lucia D'Urzo, Tom E. Blomberg
  • Publication number: 20180233350
    Abstract: Methods for selective deposition, and structures thereof, are provided. Material is selectively deposited on a first surface of a substrate relative to a second surface of a different material composition. A passivation layer is selectively formed from vapor phase reactants on the first surface while leaving the second surface without the passivation layer. A layer of interest is selectively deposited from vapor phase reactants on the second surface relative to the passivation layer. The first surface can be metallic while the second surface is dielectric, or the second surface is dielectric while the second surface is metallic. Accordingly, material, such as a dielectric, can be selectively deposited on either metallic or dielectric surfaces relative to the other type of surface using techniques described herein. Techniques and resultant structures are also disclosed for control of positioning and shape of layer edges relative to boundaries between underlying disparate materials.
    Type: Application
    Filed: February 9, 2018
    Publication date: August 16, 2018
    Inventors: Eva E. Tois, Suvi P. Haukka, Raija H. Matero, Elina Färm, Delphine Longrie, Hidemi Suemori, Jan Willem Maes, Marko Tuominen, Shaoren Deng, Ivo Johannes Raaijmakers, Andrea Illiberi
  • Patent number: 10047435
    Abstract: Methods are provided for dual selective deposition of a first material on a first surface of a substrate and a second material on a second, different surface of the same substrate. The selectively deposited materials may be, for example, metal, metal oxide, or dielectric materials.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: August 14, 2018
    Assignee: ASM IP HOLDING B.V.
    Inventors: Suvi P. Haukka, Raija H. Matero, Eva Tois, Antti Niskanen, Marko Tuominen, Hannu Huotari, Viljami J. Pore
  • Publication number: 20180151345
    Abstract: Methods are provided herein for deposition of oxide films. Oxide films may be deposited, including selective deposition of oxide thin films on a first surface of a substrate relative to a second, different surface of the same substrate. For example, an oxide thin film such as an insulating metal oxide thin film may be selectively deposited on a first surface of a substrate relative to a second, different surface of the same substrate. The second, different surface may be an organic passivation layer.
    Type: Application
    Filed: November 29, 2016
    Publication date: May 31, 2018
    Inventors: Suvi P. Haukka, Elina Färm, Raija H. Matero, Eva E. Tois, Hidemi Suemori, Antti Juhani Niskanen, Sung-Hoon Jung, Petri Räisänen
  • Patent number: 9929009
    Abstract: In some aspects, methods for forming a germanium thin film using a cyclical deposition process are provided. In some embodiments, the germanium thin film is formed on a substrate in a reaction chamber, and the process includes one or more deposition cycles of alternately and sequentially contacting the substrate with a vapor phase germanium precursor and a nitrogen reactant. In some embodiments, the process is repeated until a germanium thin film of desired thickness has been formed.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: March 27, 2018
    Assignee: ASM IP HOLDING B.V.
    Inventor: Raija H. Matero
  • Patent number: 9895715
    Abstract: Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: February 20, 2018
    Assignee: ASM IP HOLDING B.V.
    Inventors: Suvi P. Haukka, Raija H. Matero, Eva Tois, Antti Niskanen, Marko Tuominen, Hannu Huotari, Viljami J. Pore, Ivo Raaijmakers
  • Publication number: 20180005823
    Abstract: In some aspects, methods for forming a germanium thin film using a cyclical deposition process are provided. In some embodiments, the germanium thin film is formed on a substrate in a reaction chamber, and the process includes one or more deposition cycles of alternately and sequentially contacting the substrate with a vapor phase germanium precursor and a nitrogen reactant. In some embodiments, the process is repeated until a germanium thin film of desired thickness has been formed.
    Type: Application
    Filed: February 17, 2017
    Publication date: January 4, 2018
    Inventor: Raija H. Matero
  • Publication number: 20170140918
    Abstract: Antimony oxide thin films are deposited by atomic layer deposition using an antimony reactant and an oxygen source. Antimony reactants may include antimony halides, such as SbCl3, antimony alkylamines, and antimony alkoxides, such as Sb(OEt)3. The oxygen source may be, for example, ozone. In some embodiments the antimony oxide thin films are deposited in a batch reactor. The antimony oxide thin films may serve, for example, as etch stop layers or sacrificial layers.
    Type: Application
    Filed: November 22, 2016
    Publication date: May 18, 2017
    Inventors: Raija H. Matero, Linda Lindroos, Hessel Sprey, Jan Willem Maes, David de Roest, Dieter Pierreux, Kees van der Jeugd, Lucia D'Urzo, Tom E. Blomberg
  • Patent number: 9576794
    Abstract: In some aspects, methods for forming a germanium thin film using a cyclical deposition process are provided. In some embodiments, the germanium thin film is formed on a substrate in a reaction chamber, and the process includes one or more deposition cycles of alternately and sequentially contacting the substrate with a vapor phase germanium precursor and a nitrogen reactant. In some embodiments, the process is repeated until a germanium thin film of desired thickness has been formed.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: February 21, 2017
    Assignee: ASM IP HOLDING B.V.
    Inventor: Raija H. Matero
  • Publication number: 20170037513
    Abstract: Methods are provided for selectively depositing a material on a first metal or metallic surface of a substrate relative to a second, dielectric surface of the substrate, or for selectively depositing metal oxides on a first metal oxide surface of a substrate relative to a second silicon oxide surface. The selectively deposited material can be, for example, a metal, metal oxide, metal nitride, metal silicide, metal carbide and/or dielectric material. In some embodiments a substrate comprising a first metal or metallic surface and a second dielectric surface is alternately and sequentially contacted with a first vapor-phase metal halide reactant and a second reactant. In some embodiments a substrate comprising a first metal oxide surface and a second silicon oxide surface is alternately and sequentially contacted with a first vapor phase metal fluoride or chloride reactant and water.
    Type: Application
    Filed: July 27, 2016
    Publication date: February 9, 2017
    Inventors: Suvi P. Haukka, Raija H. Matero, Elina Färm, Tom E. Blomberg
  • Patent number: 9514934
    Abstract: Antimony oxide thin films are deposited by atomic layer deposition using an antimony reactant and an oxygen source. Antimony reactants may include antimony halides, such as SbCl3, antimony alkylamines, and antimony alkoxides, such as Sb(OEt)3. The oxygen source may be, for example, ozone. In some embodiments the antimony oxide thin films are deposited in a batch reactor. The antimony oxide thin films may serve, for example, as etch stop layers or sacrificial layers.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: December 6, 2016
    Assignee: ASM International N.V.
    Inventors: Raija H. Matero, Linda Lindroos, Hessel Sprey, Jan Willem Maes, David De Roest, Dieter Pierreux, Kees Van Der Jeugd, Lucia D'Urzo, Tom E. Blomberg
  • Publication number: 20160172192
    Abstract: In some aspects, methods for forming a germanium thin film using a cyclical deposition process are provided. In some embodiments, the germanium thin film is formed on a substrate in a reaction chamber, and the process includes one or more deposition cycles of alternately and sequentially contacting the substrate with a vapor phase germanium precursor and a nitrogen reactant. In some embodiments, the process is repeated until a germanium thin film of desired thickness has been formed.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 16, 2016
    Inventor: Raija H. Matero