Patents by Inventor Raimondo P. Sessego

Raimondo P. Sessego has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10012673
    Abstract: A system includes a MEMS sensor having dual proof masses capable of moving independently from one another in response to forces imposed upon the proof masses. Each proof mass includes an independent set of sense contacts configured to provide output signals corresponding to the physical displacement of the corresponding sense mass. A switch system is in communication with the sense contacts. The switch system is configured to enable a sense mode and various test modes for the MEMS sensor. When the switch system enables a sense mode, output signals from the sense contacts can be combined to produce sense signals. When the switch system enables a test mode, the second contacts are electrically decoupled from one another to disassociate the output signals from one another. The independent sense contacts and switch system enable the concurrent compensation and calibration of the proof masses along two different sense axes.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: July 3, 2018
    Assignee: NXP USA, Inc.
    Inventors: Tehmoor M. Dar, Bruno J. Debeurre, Raimondo P. Sessego
  • Publication number: 20180003734
    Abstract: A system includes a MEMS sensor having dual proof masses capable of moving independently from one another in response to forces imposed upon the proof masses. Each proof mass includes an independent set of sense contacts configured to provide output signals corresponding to the physical displacement of the corresponding sense mass. A switch system is in communication with the sense contacts. The switch system is configured to enable a sense mode and various test modes for the MEMS sensor. When the switch system enables a sense mode, output signals from the sense contacts can be combined to produce sense signals. When the switch system enables a test mode, the second contacts are electrically decoupled from one another to disassociate the output signals from one another. The independent sense contacts and switch system enable the concurrent compensation and calibration of the proof masses along two different sense axes.
    Type: Application
    Filed: September 15, 2017
    Publication date: January 4, 2018
    Inventors: Tehmoor M. Dar, Bruno J. Debeurre, Raimondo P. Sessego
  • Patent number: 9834438
    Abstract: A sensor system includes a microelectromechanical systems (MEMS) sensor, processing circuitry, measurement circuitry, stimulus circuitry and memory. The system is configured to provide an output responsive to physical displacement within the MEMS sensor to the measurement circuitry. The stimulus circuitry is configured to provide a stimulus signal to the MEMS sensor to cause a physical displacement within the MEMS sensor. The measurement circuitry is configured to process the output from the MEMS sensor and provide it to the processing circuitry, which is configured to generate stimulus signals and provide them to the stimulus circuitry for provision to the MEMS sensor. Output from the measurement circuitry corresponding to the physical displacement occurring in the MEMS sensor is monitored and used to calculate MEMS sensor characteristics. Methods for monitoring and calibrating MEMS sensors are also provided.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: December 5, 2017
    Assignee: NXP USA, INC.
    Inventors: Tehmoor M. Dar, Bruno J. Debeurre, Raimondo P. Sessego, Richard A. Deken, Aaron A. Geisberger, Krithivasan Suryanarayanan
  • Patent number: 9797921
    Abstract: A system includes a MEMS sensor having dual proof masses capable of moving independently from one another in response to forces imposed upon the proof masses. Each proof mass includes an independent set of sense contacts configured to provide output signals corresponding to the physical displacement of the corresponding sense mass. A switch system is in communication with the sense contacts. The switch system is configured to enable a sense mode and various test modes for the MEMS sensor. When the switch system enables a sense mode, output signals from the sense contacts can be combined to produce sense signals. When the switch system enables a test mode, the second contacts are electrically decoupled from one another to disassociate the output signals from one another. The independent sense contacts and switch system enable the concurrent compensation and calibration of the proof masses along two different sense axes.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: October 24, 2017
    Assignee: NXP USA, Inc.
    Inventors: Tehmoor M. Dar, Bruno J. Debeurre, Raimondo P. Sessego
  • Publication number: 20170067932
    Abstract: A system includes a MEMS sensor having dual proof masses capable of moving independently from one another in response to forces imposed upon the proof masses. Each proof mass includes an independent set of sense contacts configured to provide output signals corresponding to the physical displacement of the corresponding sense mass. A switch system is in communication with the sense contacts. The switch system is configured to enable a sense mode and various test modes for the MEMS sensor. When the switch system enables a sense mode, output signals from the sense contacts can be combined to produce sense signals. When the switch system enables a test mode, the second contacts are electrically decoupled from one another to disassociate the output signals from one another. The independent sense contacts and switch system enable the concurrent compensation and calibration of the proof masses along two different sense axes.
    Type: Application
    Filed: September 3, 2015
    Publication date: March 9, 2017
    Inventors: TEHMOOR M. DAR, BRUNO J. DEBEURRE, RAIMONDO P. SESSEGO
  • Patent number: 9527731
    Abstract: A method for testing a plurality of pressure sensors on a device wafer includes placing a diaphragm of one of the pressure sensors on the device wafer in proximity to a nozzle of a test system. A pneumatic pressure stimulus is applied to the diaphragm via an outlet of the nozzle and a cavity pressure is measured within a cavity associated with the pressure sensor in response to application of the pneumatic pressure stimulus. The pneumatic pressure stimulus within the cavity corresponds to the pressure applied to the diaphragm. Methodology is executed to test the strength and/or stiffness of the diaphragm. Additionally, the methodology and test system can be utilized to determine an individual calibration factor for each pressure sensor on the device wafer.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: December 27, 2016
    Assignee: NXP USA, Inc.
    Inventors: Bruno J. Debeurre, Peter T. Jones, William D. McWhorter, Raimondo P. Sessego
  • Patent number: 9475689
    Abstract: A sensor system includes a microelectromechanical systems (MEMS) sensor, control circuit, signal evaluation circuitry, a digital to analog converter, signal filters, an amplifier, demodulation circuitry and memory. The system is configured to generate high and low-frequency signals, combine them, and provide the combined input signal to a MEMS sensor. The MEMS sensor is configured to provide a modulated output signal that is a function of the combined signal. The system is configured to demodulate and filter the modulated output signal, compare the demodulated, filtered signal with the input signal to determine amplitude and phase differences, and determine, based on the amplitude and phase differences, various parameters of the MEMS sensor. A method for determining MEMS sensor parameters is also provided.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: October 25, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Raimondo P. Sessego, Tehmoor M. Dar, Bruno J. Debeurre
  • Patent number: 9400226
    Abstract: Embodiments of systems for calibrating transducer-including devices include a board support structure, one or more motors, a motor control module, and a calibration control module. The board support structure holds a calibration board in a fixed position with respect to the board support structure. The motor(s) rotate the board support structure around one or more axes of a fixed coordinate system. The motor control module sends motor control signals to the motor(s) to cause the motor(s) to move the board support structure through a series of orientations with respect to the fixed coordinate system. The calibration control module sends, through a communication structure, signals to the transducer-including devices, which are loaded into a plurality of sockets of the calibration board. The signals cause the transducer-including devices to generate transducer data while the board support structure is in or moving toward each orientation of the series of orientations.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: July 26, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Raimondo P. Sessego, Peter T. Jones, Seyed K. Paransun, James D. Stanley, William D. McWhorter
  • Publication number: 20160167961
    Abstract: A sensor system includes a microelectromechanical systems (MEMS) sensor, processing circuitry, measurement circuitry, stimulus circuitry and memory. The system is configured to provide an output responsive to physical displacement within the MEMS sensor to the measurement circuitry. The stimulus circuitry is configured to provide a stimulus signal to the MEMS sensor to cause a physical displacement within the MEMS sensor. The measurement circuitry is configured to process the output from the MEMS sensor and provide it to the processing circuitry, which is configured to generate stimulus signals and provide them to the stimulus circuitry for provision to the MEMS sensor. Output from the measurement circuitry corresponding to the physical displacement occurring in the MEMS sensor is monitored and used to calculate MEMS sensor characteristics. Methods for monitoring and calibrating MEMS sensors are also provided.
    Type: Application
    Filed: November 20, 2015
    Publication date: June 16, 2016
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Tehmoor M. Dar, Bruno J. Debeurre, Raimondo P. Sessego, Richard A. Deken, Aaron A. Geisberger, Krithivasan Suryanarayanan
  • Patent number: 9365413
    Abstract: Embodiments of packaged transducer-including devices and methods for their calibration are disclosed. Each device includes one or more transducers, an interface configured to facilitate communications with an external calibration controller, a memory, and a processing component. The external calibration controller sends calibration commands to the transducer-including devices through a communication structure. The processing component of each device executes code in response to receiving the calibration commands. Execution of the code includes generating transducer data from the one or more transducers, calculating calibration coefficients using the transducer data, and storing the calibration coefficients within the memory of the device.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: June 14, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Andres Barrilado, Peter T. Jones, Stephane Lestringuez, Seyed K. Paransun, Raimondo P. Sessego, James D. Stanley
  • Publication number: 20160152464
    Abstract: A sensor system includes a microelectromechanical systems (MEMS) sensor, control circuit, signal evaluation circuitry, a digital to analog converter, signal filters, an amplifier, demodulation circuitry and memory. The system is configured to generate high and low-frequency signals, combine them, and provide the combined input signal to a MEMS sensor. The MEMS sensor is configured to provide a modulated output signal that is a function of the combined signal. The system is configured to demodulate and filter the modulated output signal, compare the demodulated, filtered signal with the input signal to determine amplitude and phase differences, and determine, based on the amplitude and phase differences, various parameters of the MEMS sensor. A method for determining MEMS sensor parameters is also provided.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: RAIMONDO P. SESSEGO, Tehmoor M. DAR, Bruno J. DEBEURRE
  • Patent number: 9335340
    Abstract: A sensor system includes a microelectromechanical systems (MEMS) sensor, control circuit, signal evaluation circuitry, a digital to analog converter, signal filters, an amplifier, demodulation circuitry and memory. The system is configured to generate high and low-frequency signals, combine them, and provide the combined input signal to a MEMS sensor. The MEMS sensor is configured to provide a modulated output signal that is a function of the combined signal. The system is configured to demodulate and filter the modulated output signal, compare the demodulated, filtered signal with the input signal to determine amplitude and phase differences, and determine, based on the amplitude and phase differences, various parameters of the MEMS sensor. A method for determining MEMS sensor parameters is also provided.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: May 10, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Raimondo P. Sessego, Tehmoor M. Dar, Bruno J. Debeurre
  • Patent number: 9335396
    Abstract: A sensor system includes a microelectromechanical systems (MEMS) sensor, a processor, measurement circuitry, stimulus circuitry and memory. The MEMS sensor is configured to provide an output responsive to physical displacement within the MEMS sensor to the measurement circuitry. The stimulus circuitry is configured to provide a stimulus signal to the MEMS sensor to cause a physical displacement within the MEMS sensor. The measurement circuitry is configured to process the output from the MEMS sensor and provide it to the processor. The processor is configured to generate stimulus signals and provide them to the stimulus circuitry for provision to the MEMS sensor. The processor is configured to monitor the output from the measurement circuitry corresponding to the physical displacement occurring in the MEMS sensor, calculate MEMS sensor characteristics based on the output, and update calibration values based on the output. Methods for monitoring and calibrating MEMS sensors are also provided.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 10, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Bruno Debeurre, Tehmoor M. Dar, Raimondo P. Sessego
  • Publication number: 20160116361
    Abstract: A system for testing pressure sensors on a device wafer includes a tray for holding the device wafer. The tray includes a base having a surface, a spacer extending from the surface, and a tacky material disposed on the surface. The spacer holds the device wafer spaced apart from the surface of the base to form a chamber between the surface and the device wafer. A wafer chuck retains the tray and the device wafer under vacuum. The system further includes a nozzle and a seal element in fixed engagement with the nozzle. The seal element surrounds the outlet of the nozzle and is adapted for mechanical contact with the device wafer. An actuator is configured to place the nozzle and a diaphragm of one of the pressure sensors in proximity to one another, wherein a pneumatic pressure stimulus is applied to the diaphragm via an outlet of the nozzle.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 28, 2016
    Inventors: BRUNO J. DEBEURRE, ALBERT S. CHECKANOV, JANSEN D. CURRENS, PETER T. JONES, WILLIAM D. MCWHORTER, RAIMONDO P. SESSEGO
  • Publication number: 20160107887
    Abstract: A method for testing a plurality of pressure sensors on a device wafer includes placing a diaphragm of one of the pressure sensors on the device wafer in proximity to a nozzle of a test system. A pneumatic pressure stimulus is applied to the diaphragm via an outlet of the nozzle and a cavity pressure is measured within a cavity associated with the pressure sensor in response to application of the pneumatic pressure stimulus. The pneumatic pressure stimulus within the cavity corresponds to the pressure applied to the diaphragm. Methodology is executed to test the strength and/or stiffness of the diaphragm. Additionally, the methodology and test system can be utilized to determine an individual calibration factor for each pressure sensor on the device wafer.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 21, 2016
    Inventors: BRUNO J. DEBEURRE, PETER T. JONES, WILLIAM D. MCWHORTER, RAIMONDO P. SESSEGO
  • Patent number: 9221679
    Abstract: A sensor system includes a microelectromechanical systems (MEMS) sensor, processing circuitry, measurement circuitry, stimulus circuitry and memory. The system is configured to provide an output responsive to physical displacement within the MEMS sensor to the measurement circuitry. The stimulus circuitry is configured to provide a stimulus signal to the MEMS sensor to cause a physical displacement within the MEMS sensor. The measurement circuitry is configured to process the output from the MEMS sensor and provide it to the processing circuitry, which is configured to generate stimulus signals and provide them to the stimulus circuitry for provision to the MEMS sensor. Output from the measurement circuitry corresponding to the physical displacement occurring in the MEMS sensor is monitored and used to calculate MEMS sensor characteristics. Methods for monitoring and calibrating MEMS sensors are also provided.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: December 29, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Tehmoor M. Dar, Bruno J. Debeurre, Raimondo P. Sessego, Richard A. Deken, Aaron A. Geisberger, Krithivasan Suryanarayanan
  • Publication number: 20150027198
    Abstract: A sensor system includes a microelectromechanical systems (MEMS) sensor, control circuit, signal evaluation circuitry, a digital to analog converter, signal filters, an amplifier, demodulation circuitry and memory. The system is configured to generate high and low-frequency signals, combine them, and provide the combined input signal to a MEMS sensor. The MEMS sensor is configured to provide a modulated output signal that is a function of the combined signal. The system is configured to demodulate and filter the modulated output signal, compare the demodulated, filtered signal with the input signal to determine amplitude and phase differences, and determine, based on the amplitude and phase differences, various parameters of the MEMS sensor. A method for determining MEMS sensor parameters is also provided.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Raimondo P. Sessego, Tehmoor M. Dar, Bruno J. Debeurre
  • Publication number: 20140352400
    Abstract: Embodiments of packaged transducer-including devices and methods for their calibration are disclosed. Each device includes one or more transducers, an interface configured to facilitate communications with an external calibration controller, a memory, and a processing component. The external calibration controller sends calibration commands to the transducer-including devices through a communication structure. The processing component of each device executes code in response to receiving the calibration commands. Execution of the code includes generating transducer data from the one or more transducers, calculating calibration coefficients using the transducer data, and storing the calibration coefficients within the memory of the device.
    Type: Application
    Filed: August 8, 2013
    Publication date: December 4, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Andres BARRILADO, Peter T. JONES, Stephane LESTRINGUEZ, Seyed K. PARANSUN, Raimondo P. SESSEGO, James D. STANLEY
  • Publication number: 20140303926
    Abstract: Embodiments of systems for calibrating transducer-including devices include a board support structure, one or more motors, a motor control module, and a calibration control module. The board support structure holds a calibration board in a fixed position with respect to the board support structure. The motor(s) rotate the board support structure around one or more axes of a fixed coordinate system. The motor control module sends motor control signals to the motor(s) to cause the motor(s) to move the board support structure through a series of orientations with respect to the fixed coordinate system. The calibration control module sends, through a communication structure, signals to the transducer-including devices, which are loaded into a plurality of sockets of the calibration board. The signals cause the transducer-including devices to generate transducer data while the board support structure is in or moving toward each orientation of the series of orientations.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 9, 2014
    Inventors: Raimondo P. Sessego, Peter T. Jones, Seyed K. Paransun, James D. Stanley, William D. McWhorter
  • Publication number: 20140260508
    Abstract: A sensor system includes a microelectromechanical systems (MEMS) sensor, processing circuitry, measurement circuitry, stimulus circuitry and memory. The system is configured to provide an output responsive to physical displacement within the MEMS sensor to the measurement circuitry. The stimulus circuitry is configured to provide a stimulus signal to the MEMS sensor to cause a physical displacement within the MEMS sensor. The measurement circuitry is configured to process the output from the MEMS sensor and provide it to the processing circuitry, which is configured to generate stimulus signals and provide them to the stimulus circuitry for provision to the MEMS sensor. Output from the measurement circuitry corresponding to the physical displacement occurring in the MEMS sensor is monitored and used to calculate MEMS sensor characteristics. Methods for monitoring and calibrating MEMS sensors are also provided.
    Type: Application
    Filed: January 22, 2014
    Publication date: September 18, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Tehmoor M. Dar, Bruno J. Debeurre, Raimondo P. Sessego, Richard A. Deken, Aaron A. Geisberger, Krithivasan Suryanarayanan