Patents by Inventor Rainer K. Krause

Rainer K. Krause has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10718818
    Abstract: A method for performance analysis and use management of a battery module is disclosed, wherein the battery module includes a multitude of interconnected battery cells and a battery management system with a plurality of dedicated analysis/control units (ACUs) that analyze performance of the battery module, the ACUs being assigned to individual battery cells and/or battery blocks of battery module. The method includes measuring current and voltage of one or more of an individual battery cell and a battery block; calculating a charge removal from the one or more of the individual battery cell and the battery block; calculating a loading charge of the one or more of the individual battery cell and the battery block; determining the remaining charge of the one or more of the individual battery cell and the battery block; and failure monitoring of the one or more of the individual battery cell and the battery block.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: July 21, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Haag, Rainer K. Krause, Thorsten Muehge, Joerg Weyerhaeuser
  • Publication number: 20180038916
    Abstract: A method for performance analysis and use management of a battery module is disclosed, wherein the battery module includes a multitude of interconnected battery cells and a battery management system with a plurality of dedicated analysis/control units (ACUs) that analyze performance of the battery module, the ACUs being assigned to individual battery cells and/or battery blocks of battery module. The method includes measuring current and voltage of one or more of an individual battery cell and a battery block; calculating a charge removal from the one or more of the individual battery cell and the battery block; calculating a loading charge of the one or more of the individual battery cell and the battery block; determining the remaining charge of the one or more of the individual battery cell and the battery block; and failure monitoring of the one or more of the individual battery cell and the battery block.
    Type: Application
    Filed: October 17, 2017
    Publication date: February 8, 2018
    Inventors: Michael Haag, Rainer K. Krause, Thorsten Muehge, Joerg Weyerhaeuser
  • Patent number: 9851412
    Abstract: A method for performance analysis and use management of a battery module is disclosed, wherein the battery module includes a multitude of interconnected battery cells and a battery management system with a plurality of dedicated analysis/control units (ACUs) that analyze performance of the battery module, the ACUs being assigned to individual battery cells and/or battery blocks of battery module. The method includes measuring current and voltage of one or more of an individual battery cell and a battery block; calculating a charge removal from the one or more of the individual battery cell and the battery block; calculating a loading charge of the one or more of the individual battery cell and the battery block; determining the remaining charge of the one or more of the individual battery cell and the battery block; and failure monitoring of the one or more of the individual battery cell and the battery block.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: December 26, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Haag, Rainer K. Krause, Thorsten Muehge, Joerg Weyerhaeuser
  • Patent number: 8938314
    Abstract: A method for optimizing energy efficiency in a manufacturing process includes monitoring power consumption of each of a plurality of manufacturing entities of the manufacturing process using a power metering device assigned thereto; collecting, from the power metering devices, a first data stream that includes information about the power consumption; collecting a second data stream that includes information about the manufacturing entity and process; determining an optimized product routing of products to be manufactured by the manufacturing process from one manufacturing entity to another manufacturing entity, based on the collected first and second data streams, by simulating different product routings and determining the optimal product routing with respect to the overall energy consumption of the manufacturing process; and adjusting, via a manufacturing control system, the manufacturing process based on the optimized product routing.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: January 20, 2015
    Assignee: International Business Machines Corporation
    Inventor: Rainer K. Krause
  • Patent number: 8723021
    Abstract: A solar cell includes a substrate having an N-region and a P-region, a first anti-reflective layer disposed on the substrate, a metallic contact disposed on the first anti-reflective layer, a second anti-reflective layer disposed on the first anti-reflective layer and the metallic contact, and a region partially defined by the first anti-reflective layer and the second anti-reflective layer having diffused metallic contact material operative to form a conductive path to the substrate through the first anti-reflective layer, the metallic contact, and the second anti-reflective layer.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Harold J. Hovel, Rainer K. Krause, Zhengwen Li, Huilong Zhu
  • Patent number: 8692649
    Abstract: Asset management for control of electric appliances comprises a keycode unit and an equipment unit embedded in an appliance. The keycode unit is located in a protected environment and relates to an asset management area. The equipment unit may store an appliance identification code. The keycode unit and the equipment unit may be in communication contact, whereby the equipment unit sends positioning coordinates to the keycode unit, and wherein the equipment unit is adapted to lock the appliance via the lock unit, in response to a lock signal that the equipment unit receives from the keycode unit, if the appliance moves outside the asset management area.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: April 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Rainer K. Krause, Kevin S. Petrarca, Carl J. Radens, Brian C. Sapp
  • Patent number: 8574950
    Abstract: A method for manufacturing one or more electrically contactable grids on at least one surface of a semiconductor substrate for use in a solar cell product includes the following. A heat-sensitive masking agent layer is deposited on the surface of the substrate of the solar cell product. The masking agent layer is locally heated to form a grid mask. Selected parts of the masking agent layer defined by locally heating are removed to form openings in the grid mask. A contact metallization is applied on the grid mask.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: November 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Rainer K. Krause, Zhengwen O. Li, Kevin S. Petrarca, Roger A. Quon, Carl Radens, Brian C. Sapp
  • Patent number: 8294027
    Abstract: A method for fabricating a cell structure includes doping a substrate to form a N-region and a P-region, disposing a first anti-reflective layer on the substrate, disposing a metallic contact paste on the first anti-reflective layer, drying the metallic contact paste to form contacts, disposing a second anti-reflective layer on the first anti-reflective layer and the metallic contacts, and heating the cell structure, wherein heating the cell structure results in metallic contact material penetrating the first anti-reflective layer and contacting the substrate.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: October 23, 2012
    Assignee: International Business Machines Corporation
    Inventors: Harold J. Hovel, Rainer K. Krause, Zhengwen Li, Huilong Zhu
  • Publication number: 20120174979
    Abstract: A solar cell includes a substrate having an N-region and a P-region, a first anti-reflective layer disposed on the substrate, a metallic contact disposed on the first anti-reflective layer, a second anti-reflective layer disposed on the first anti-reflective layer and the metallic contact, and a region partially defined by the first anti-reflective layer and the second anti-reflective layer having diffused metallic contact material operative to form a conductive path to the substrate through the first anti-reflective layer, the metallic contact, and the second anti-reflective layer.
    Type: Application
    Filed: March 9, 2012
    Publication date: July 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Harold J. Hovel, Rainer K. Krause, Zhengwen Li, Huilong Zhu
  • Publication number: 20120126937
    Abstract: Asset management for control of electric appliances comprises a keycode unit and an equipment unit embedded in an appliance. The keycode unit is located in a protected environment and relates to an asset management area. The equipment unit may store an appliance identification code. The keycode unit and the equipment unit may be in communication contact, whereby the equipment unit sends positioning coordinates to the keycode unit, and wherein the equipment unit is adapted to lock the appliance via the lock unit, in response to a lock signal that the equipment unit receives from the keycode unit, if the appliance moves outside the asset management area.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 24, 2012
    Applicant: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Rainer K. Krause, Kevin S. Petrarca, Carl J. Radens, Brian C. Sapp
  • Publication number: 20120123600
    Abstract: A method for optimizing energy efficiency in a manufacturing process includes monitoring power consumption of each of a plurality of manufacturing entities of the manufacturing process using a power metering device assigned thereto; collecting, from the power metering devices, a first data stream that includes information about the power consumption; collecting a second data stream that includes information about the manufacturing entity and process; determining an optimized product routing of products to be manufactured by the manufacturing process from one manufacturing entity to another manufacturing entity, based on the collected first and second data streams, by simulating different product routings and determining the optimal product routing with respect to the overall energy consumption of the manufacturing process; and adjusting, via a manufacturing control system, the manufacturing process based on the optimized product routing.
    Type: Application
    Filed: October 11, 2011
    Publication date: May 17, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Rainer K. Krause
  • Publication number: 20120116699
    Abstract: A method for performance analysis and use management of a battery module is disclosed, wherein the battery module includes a multitude of interconnected battery cells and a battery management system with a plurality of dedicated analysis/control units (ACUs) that analyze performance of the battery module, the ACUs being assigned to individual battery cells and/or battery blocks of battery module. The method includes measuring current and voltage of one or more of an individual battery cell and a battery block; calculating a charge removal from the one or more of the individual battery cell and the battery block; calculating a loading charge of the one or more of the individual battery cell and the battery block; determining the remaining charge of the one or more of the individual battery cell and the battery block; and failure monitoring of the one or more of the individual battery cell and the battery block.
    Type: Application
    Filed: October 11, 2011
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Haag, Rainer K. Krause, Thorsten Muehge, Joerg Weyerhaeuser
  • Patent number: 8043886
    Abstract: Processes for fabricating a contact grid for a photovoltaic cell generally includes providing a photovoltaic cell having an antireflective coating disposed on a sun facing side, the photovoltaic cell comprising a silicon substrate having a p-n junction; soft stamping a pattern of a UV sensitive photoresist and/or polymer onto the antireflective coating; exposing the UV sensitive photoresist and/or polymer to ultraviolet radiation to cure the UV sensitive photoresist and/or polymer; etching the pattern to form openings in the antireflective coating that define the contact grid; stripping the UV sensitive photoresist and/or polymer; and depositing a conductive metal into the openings defined by the pattern. The metal based paste can be aluminum based, which can be annealed at a relatively low temperature.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: October 25, 2011
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Harold J. Hovel, Rainer K. Krause, Kevin M. Prettyman
  • Publication number: 20110174369
    Abstract: A method for fabricating a cell structure includes doping a substrate to form a N-region and a P-region, disposing a first anti-reflective layer on the substrate, disposing a metallic contact paste on the first anti-reflective layer, drying the metallic contact paste to form contacts, disposing a second anti-reflective layer on the first anti-reflective layer and the metallic contacts, and heating the cell structure, wherein heating the cell structure results in metallic contact material penetrating the first anti-reflective layer and contacting the substrate.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Applicant: International Business Machines Corporation
    Inventors: Harold J. Hovel, Rainer K. Krause, Zhengwen Li, Huilong Zhu
  • Publication number: 20110100453
    Abstract: A method for manufacturing one or more electrically contactable grids on at least one surface of a semiconductor substrate for use in a solar cell product includes the following. A heat-sensitive masking agent layer is deposited on the surface of the substrate of the solar cell product. The masking agent layer is locally heated to form a grid mask. Selected parts of the masking agent layer defined by locally heating are removed to form openings in the grid mask. A contact metallization is applied on the grid mask.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 5, 2011
    Inventors: Lawrence A. Clevenger, Rainer K. Krause, Zhengwen O. Li, Kevin S. Petrarca, Roger A. Quon, Carl Radens, Brian C. Sapp
  • Publication number: 20100317148
    Abstract: Processes for fabricating a contact grid for a photovoltaic cell generally includes providing a photovoltaic cell having an antireflective coating disposed on a sun facing side, the photovoltaic cell comprising a silicon substrate having a p-n junction; soft stamping a pattern of a UV sensitive photoresist and/or polymer onto the antireflective coating; exposing the UV sensitive photoresist and/or polymer to ultraviolet radiation to cure the UV sensitive photoresist and/or polymer; etching the pattern to form openings in the antireflective coating that define the contact grid; stripping the UV sensitive photoresist and/or polymer; and depositing a conductive metal into the openings defined by the pattern. The metal based paste can be aluminum based, which can be annealed at a relatively low temperature.
    Type: Application
    Filed: August 3, 2010
    Publication date: December 16, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Harold J. Hovel, Rainer K. Krause, Kevin M. Prettyman
  • Publication number: 20100075261
    Abstract: Processes for fabricating a contact grid for a photovoltaic cell generally includes providing a photovoltaic cell having an antireflective coating disposed on a sun facing side, the photovoltaic cell comprising a silicon substrate having a p-n junction; soft stamping a pattern of a UV sensitive photoresist and/or polymer onto the antireflective coating; exposing the UV sensitive photoresist and/or polymer to ultraviolet radiation to cure the UV sensitive photoresist and/or polymer; etching the pattern to form openings in the antireflective coating that define the contact grid; stripping the UV sensitive photoresist and/or polymer; and depositing a conductive metal into the openings defined by the pattern. The metal based paste can be aluminum based, which can be annealed at a relatively low temperature.
    Type: Application
    Filed: September 22, 2008
    Publication date: March 25, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Harold J. Hovel, Rainer K. Krause, Kevin M. Prettyman