Patents by Inventor Rainer Minixhofer

Rainer Minixhofer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10636777
    Abstract: We disclose an Infrared (IR) device comprising a first substrate comprising a first cavity; a dielectric layer disposed on the first substrate; a second substrate disposed on the dielectric layer and on the opposite side of the first substrate, the second substrate having a second cavity. The device further comprises an optically transmissive layer attached to one of the first and second substrates; a further layer provided to another of the first and second substrates so that the IR device is substantially closed. Holes are provided through the dielectric layer so that a pressure in the first cavity is substantially the same level as a pressure in the second cavity.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: April 28, 2020
    Assignee: AMS SENSORS UK LIMITED
    Inventors: Florin Udrea, Syed Zeeshan Ali, Richard Henry Hopper, Rainer Minixhofer
  • Patent number: 10374114
    Abstract: The lateral single-photon avalanche diode comprises a semiconductor body comprising a semiconductor material of a first type of electric conductivity, a trench in the semiconductor body, and anode and cathode terminals. A junction region of the first type of electric conductivity is located near the sidewall of the trench, and the electric conductivity is higher in the junction region than at a farther distance from the sidewall. A semiconductor layer of an opposite second type of electric conductivity is arranged at the sidewall of the trench adjacent to the junction region. The anode and cathode terminals are electrically connected with the semiconductor layer and with the junction region, respectively. The junction region may be formed by a sidewall implantation.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: August 6, 2019
    Assignee: ams AG
    Inventors: Jordi Teva, Frederic Roger, Ewald Stueckler, Stefan Jessenig, Rainer Minixhofer, Ewald Wachmann, Martin Schrems, Guenther Koppitsch
  • Publication number: 20190198487
    Abstract: We disclose an Infrared (IR) device comprising a first substrate comprising a first cavity; a dielectric layer disposed on the first substrate; a second substrate disposed on the dielectric layer and on the opposite side of the first substrate, the second substrate having a second cavity. The device further comprises an optically transmissive layer attached to one of the first and second substrates; a further layer provided to another of the first and second substrates so that the IR device is substantially closed. Holes are provided through the dielectric layer so that a pressure in the first cavity is substantially the same level as a pressure in the second cavity.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Florin Udrea, Syed Zeeshan Ali, Richard Henry Hopper, Rainer Minixhofer
  • Publication number: 20190146069
    Abstract: An optical sensor arrangement for time-of-flight comprises a first and a second cavity separated by an optical barrier and covered by a cover arrangement. An optical emitter is arranged in the first cavity, a measurement and a reference photodetector are arranged in the second cavity. The cover arrangement comprises a plate and layers of material arranged on an inner main surface thereof. The layers comprise an opaque coating with a first and second aperture above the first cavity, and with a third and fourth aperture above the second cavity. The measurement photodetector is configured to detect light entering the second cavity through the fourth aperture. The second and the third aperture establish a reference path for light from the emitter to the reference photodetector.
    Type: Application
    Filed: June 2, 2017
    Publication date: May 16, 2019
    Inventors: Harald Etschmaier, Rainer Minixhofer, Georg Roehrer
  • Patent number: 9947711
    Abstract: The semiconductor device comprises a semiconductor substrate (1), a sensor or sensor array (2) arranged at a main surface (10) of the substrate, an integrated circuit (3) arranged at or above the main surface, and a focusing element (17) comprising recesses (4) formed within a further main surface (11) of the substrate opposite the main surface. The focusing element may be arranged opposite the sensor or sensor array (2), which may be a photosensor or photodetector or an array of photosensors or photodetectors, for instance. The focusing element (17) is formed by etching the recesses (4) into the semiconductor material.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: April 17, 2018
    Assignee: AMS AG
    Inventors: Rainer Minixhofer, Martin Schrems, Sara Carniello
  • Patent number: 9842946
    Abstract: The semiconductor device comprises a semiconductor substrate (1), a photosensor (2) integrated in the substrate (1) at a main surface (10), an emitter (12) of radiation mounted above the main surface (10), and a cover (6), which is at least partially transmissive for the radiation, arranged above the main surface (10). The cover (6) comprises a cavity (7), and the emitter (12) is arranged in the cavity (7). A radiation barrier (9) can be provided on a lateral surface of the cavity (7) to inhibit cross-talk between the emitter (12) and the photosensor (2).
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: December 12, 2017
    Assignee: AMS AG
    Inventors: Rainer Minixhofer, Bernhard Stering, Harald Etschmaier
  • Patent number: 9837573
    Abstract: The method comprises the steps of providing a semiconductor device comprising a semiconductor layer (1) with at least one radiation sensor (6) and a dielectric layer (2), arranging a web (3) comprising a plurality of recesses (4) on the dielectric layer, and introducing ink of different colors (A, B, C) in the recesses by inkjets (I).
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: December 5, 2017
    Assignee: AMS AG
    Inventor: Rainer Minixhofer
  • Publication number: 20170125613
    Abstract: The semiconductor device comprises a semiconductor substrate (1), a photosensor (2) integrated in the substrate (1) at a main surface (10), an emitter (12) of radiation mounted above the main surface (10), and a cover (6), which is at least partially transmissive for the radiation, arranged above the main surface (10). The cover (6) comprises a cavity (7), and the emitter (12) is arranged in the cavity (7). A radiation barrier (9) can be provided on a lateral surface of the cavity (7) to inhibit cross-talk between the emitter (12) and the photosensor (2).
    Type: Application
    Filed: May 22, 2015
    Publication date: May 4, 2017
    Inventors: Rainer MINIXHOFER, Bernhard STERING, Harald ETSCHMAIER
  • Publication number: 20170092787
    Abstract: The semiconductor device comprises a semiconductor substrate (2), a transition layer (5) in or on the semiconductor substrate, the transition layer allowing propagation of incident radiation (7) according to a refractive index, and a photonic component (4) facing the transition layer. A surface (6) of the transition layer is structured such that the effective refractive index is gradually changed through the transition layer with changing distance from the photonic component.
    Type: Application
    Filed: April 23, 2015
    Publication date: March 30, 2017
    Inventors: Guenther KOPPITSCH, Rainer MINIXHOFER
  • Publication number: 20170062504
    Abstract: The semiconductor device comprises a semiconductor substrate (1), a sensor or sensor array (2) arranged at a main surface (10) of the substrate, an integrated circuit (3) arranged at or above the main surface, and a focusing element (17) comprising recesses (4) formed within a further main surface (11) of the substrate opposite the main surface. The focusing element may be arranged opposite the sensor or sensor array (2), which may be a photosensor or photodetector or an array of photosensors or photodetectors, for instance. The focusing element (17) is formed by etching the recesses (4) into the semiconductor material.
    Type: Application
    Filed: February 10, 2015
    Publication date: March 2, 2017
    Inventors: Rainer MINIXHOFER, Martin SCHREMS, Sara CARNIELLO
  • Patent number: 9577001
    Abstract: The integrated imaging device comprises a substrate (1) with an integrated circuit (4), a cover (2), a cavity (6) enclosed between the substrate (1) and the cover (2), and a sensor (5) or an array of sensors (5) arranged in the cavity (6). A surface (11, 12) of the substrate (1) or the cover (2) opposite the cavity (6) has a structure (8) directing incident radiation. The surface structure (8) may be a plate zone or a Fresnel lens focusing infrared radiation and may be etched into the surface of the substrate or cover, respectively.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: February 21, 2017
    Assignee: AMS AG
    Inventors: Hubert Enichlmair, Rainer Minixhofer, Martin Schrems
  • Patent number: 9443759
    Abstract: A cutout (11), which penetrates the semiconductor body, is present in the semiconductor body (1). A conductor layer (6), which is electrically conductively connected to a metal plane (3) on or over the semiconductor body, screens the semiconductor body electrically from the cutout. The conductor layer can be metal, optionally with a barrier layer (6a), or a doped region of the semiconductor body.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: September 13, 2016
    Assignee: AMS AG
    Inventors: Rainer Minixhofer, Ewald Stückler, Martin Schrems, Günther Koppitsch, Jochen Kraft, Jordi Teva
  • Publication number: 20160104741
    Abstract: The integrated imaging device comprises a substrate (1) with an integrated circuit (4), a cover (2), a cavity (6) enclosed between the substrate (1) and the cover (2), and a sensor (5) or an array of sensors (5) arranged in the cavity (6). A surface (11, 12) of the substrate (1) or the cover (2) opposite the cavity (6) has a structure (8) directing incident radiation. The surface structure (8) may be a plate zone or a Fresnel lens focusing infrared radiation and may be etched into the surface of the substrate or cover, respectively.
    Type: Application
    Filed: April 15, 2014
    Publication date: April 14, 2016
    Applicant: ams AG
    Inventors: Hubert ENICHLMAIR, Rainer MINIXHOFER, Martin SCHREMS
  • Publication number: 20160035929
    Abstract: The lateral single-photon avalanche diode comprises a semiconductor body comprising a semiconductor material of a first type of electric conductivity, a trench in the semiconductor body, and anode and cathode terminals. A junction region of the first type of electric conductivity is located near the sidewall of the trench, and the electric conductivity is higher in the junction region than at a farther distance from the sidewall. A semiconductor layer of an opposite second type of electric conductivity is arranged at the sidewall of the trench adjacent to the junction region. The anode and cathode terminals are electrically connected with the semiconductor layer and with the junction region, respectively. The junction region may be formed by a sidewall implantation.
    Type: Application
    Filed: March 11, 2014
    Publication date: February 4, 2016
    Applicant: AMS AG
    Inventors: Jordi TEVA, Frederic ROGER, Ewald STUECKLER, Stefan JESSENIG, Rainer MINIXHOFER, Ewald WACHMANN, Martin SCHREMS, Guenther KOPPITSCH
  • Publication number: 20160013355
    Abstract: The method comprises the steps of providing a semiconductor device comprising a semiconductor layer (1) with at least one radiation sensor (6) and a dielectric layer (2), arranging a web (3) comprising a plurality of recesses (4) on the dielectric layer, and introducing ink of different colors (A, B, C) in the recesses by inkjets (I).
    Type: Application
    Filed: February 4, 2014
    Publication date: January 14, 2016
    Inventor: Rainer MINIXHOFER
  • Patent number: 9018726
    Abstract: The photodiode has a p-type doped region (2) and an n-type doped region (3) in a semiconductor body (1), and a pn junction (4) between the p-type doped region and the n-type doped region. The semiconductor body has a cavity (5) such that the pn junction (4) has a distance (d) of at most 30 ?m from the bottom of the cavity (7).
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: April 28, 2015
    Assignee: ams AG
    Inventors: Jochen Kraft, Ingrid Jonak-Auer, Rainer Minixhofer, Jordi Teva, Herbert Truppe
  • Patent number: 8969961
    Abstract: A semiconductor body (10) comprises a field-effect transistor (11). The field-effect transistor (11) comprises a drain region (12) of a first conduction type, a source region (13) of the first conduction type, a drift region (16) and a channel region (14) of a second conduction type which is opposite to the first conduction type. The drift region (16) comprises at least two stripes (15, 32) of the first conduction type which extend from the drain region (12) in a direction towards the source region (13). The channel region (14) is arranged between the drift region (16) and the source region (13).
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: March 3, 2015
    Assignee: AMS AG
    Inventors: Jong Mun Park, Verena Vescoli, Rainer Minixhofer
  • Publication number: 20140203340
    Abstract: The photodiode has a p-type doped region (2) and an n-type doped region (3) in a semiconductor body (1), and a pn junction (4) between the p-type doped region and the n-type doped region. The semiconductor body has a cavity (5) such that the pn junction (4) has a distance (d) of at most 30 ?m from the bottom of the cavity (7).
    Type: Application
    Filed: May 4, 2012
    Publication date: July 24, 2014
    Applicant: AMS AG
    Inventors: Jochen Kraft, Ingrid Jonak-Auer, Rainer Minixhofer, Jordi Teva, Herbert Truppe
  • Publication number: 20140191413
    Abstract: A cutout (11), which penetrates the semiconductor body, is present in the semiconductor body (1). A conductor layer (6), which is electrically conductively connected to a metal plane (3) on or over the semiconductor body, screens the semiconductor body electrically from the cutout. The conductor layer can be metal, optionally with a barrier layer (6a), or a doped region of the semiconductor body.
    Type: Application
    Filed: May 16, 2012
    Publication date: July 10, 2014
    Applicant: ams AG
    Inventors: Rainer Minixhofer, Ewald Stückler, Martin Schrems, Günther Koppitsch, Jochen Kraft, Jordi Teva
  • Patent number: 8525331
    Abstract: A chip design (1) comprising an external supply connection (VBAT), an internal supply connection (VDD), an integrated circuit (2) that is coupled to the internal supply connection (VDD) for voltage supply, and a fuse (3) that electrically connects the internal supply connection (VBAT) and is arranged within the chip design (1).
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: September 3, 2013
    Assignee: AMS AG
    Inventors: Karl Ilzer, Rainer Minixhofer, Mario Manninger