Patents by Inventor Rainer Paetzel
Rainer Paetzel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8265117Abstract: Laser systems have a line-narrowed master oscillator and a power oscillator for amplifying the output of the master oscillator. The power oscillator includes optical arrangements for limiting the bandwidth of radiation that can be amplified. The limited amplification bandwidth of the power oscillator is relatively broad compared to that of the output of the master oscillator, but narrower than would be the case without the bandwidth limiting arrangements. The bandwidth narrowing arrangements of the power oscillator function primarily to restrict the bandwidth of amplified spontaneous emission generated by the power oscillator.Type: GrantFiled: June 11, 2010Date of Patent: September 11, 2012Assignee: Coherent GmbHInventors: Sergei V. Govorkov, Alexander O. W. Weissner, Timur V. Misyuryaev, Alexander Jacobson, Gongxue Hua, Rainer Paetzel, Thomas Schroeder, Hans-Stephen Albrecht
-
Publication number: 20100309945Abstract: Laser systems have a line-narrowed master oscillator and a power oscillator for amplifying the output of the master oscillator. The power oscillator includes optical arrangements for limiting the bandwidth of radiation that can be amplified. The limited amplification bandwidth of the power oscillator is relatively broad compared to that of the output of the master oscillator, but narrower than would be the case without the bandwidth limiting arrangements. The bandwidth narrowing arrangements of the power oscillator function primarily to restrict the bandwidth of amplified spontaneous emission generated by the power oscillator.Type: ApplicationFiled: June 11, 2010Publication date: December 9, 2010Applicant: Coherent, Inc.Inventors: Sergei V. GOVORKOV, Alexander O.W. Weissner, Timur V. Misyuryaev, Alexander Jacobson, Gongxue Hua, Rainer Paetzel, Thomas Schroeder, Hans-Stephen Albrecht
-
Publication number: 20100271704Abstract: Described is a device as well as a method for beam forming a homogenized light beam, particularly a laser beam, with a unit that homogenizes the light beam at least along a cross-sectional axis of the light beam, a mask following downstream in the beam path of the light beam, said mask having mask regions that block the light beam and those that are transparent, and also an optical imaging unit disposed downstream in the beam path. The invention stands out on account of the fact that an optical module is provided in the beam path between the homogenizing unit and the mask, said module imaging the entire cross section of the homogenized light beam largely without losses onto all transparent mask regions with uniform distribution.Type: ApplicationFiled: November 18, 2008Publication date: October 28, 2010Inventors: Rainer Pätzel, Ludwig Schwenger
-
Patent number: 7760788Abstract: Laser systems have a line-narrowed master oscillator and a power oscillator for amplifying the output of the master oscillator. The power oscillator includes optical arrangements for limiting the bandwidth of radiation that can be amplified. The limited amplification bandwidth of the power oscillator is relatively broad compared to that of the output of the master oscillator, but narrower than would be the case without the bandwidth limiting arrangements. The bandwidth narrowing arrangements of the power oscillator function primarily to restrict the bandwidth of amplified spontaneous emission generated by the power oscillator.Type: GrantFiled: July 9, 2008Date of Patent: July 20, 2010Assignee: Coherent, Inc.Inventors: Sergei V. Govorkov, Alexander O. W. Wiessner, Timur V. Misyuryaev, Alexander Jacobson, Gongxue Hua, Rainer Paetzel, Thomas Schroeder, Hans-Stephan Albrecht
-
Publication number: 20080291962Abstract: Laser systems have a line-narrowed master oscillator and a power oscillator for amplifying the output of the master oscillator. The power oscillator includes optical arrangements for limiting the bandwidth of radiation that can be amplified. The limited amplification bandwidth of the power oscillator is relatively broad compared to that of the output of the master oscillator, but narrower than would be the case without the bandwidth limiting arrangements. The bandwidth narrowing arrangements of the power oscillator function primarily to restrict the bandwidth of amplified spontaneous emission generated by the power oscillator.Type: ApplicationFiled: July 9, 2008Publication date: November 27, 2008Inventors: Sergei V. Govorkov, Alexander O.W. Weissner, Timur V. Misyuryaev, Alexander Jacobson, Gongxue Hua, Rainer Paetzel, Thomas Schroeder, Hans-Stephan Albrecht
-
Patent number: 7418022Abstract: Laser systems have a line-narrowed master oscillator and a power oscillator for amplifying the output of the master oscillator. The power oscillator includes optical arrangements for limiting the bandwidth of radiation that can be amplified. The limited amplification bandwidth of the power oscillator is relatively broad compared to that of the output of the master oscillator, but narrower than would be the case without the bandwidth limiting arrangements. The bandwidth narrowing arrangements of the power oscillator function primarily to restrict the bandwidth of amplified spontaneous emission generated by the power oscillator.Type: GrantFiled: June 1, 2005Date of Patent: August 26, 2008Assignee: Coherent, Inc.Inventors: Sergei V. Govorkov, Alexander O. W. Wiessner, Timur V. Misyuryaev, Alexander Jacobson, Gongxue Hua, Rainer Paetzel, Thomas Schroeder, Hans-Stephan Albrecht
-
Publication number: 20080019411Abstract: An excimer laser is disclosed in which a gas-discharge is formed for exciting an excimer-forming lasing-gas mixture. The gas discharge is formed between an elongated anode electrode and a elongated cathode electrode. The anode is in contact with a dielectric surface and the cathode is supported above the dielectric surface, laterally spaced from and parallel to the anode. The gas-discharge has a surface-discharge or sliding discharge portion extending from the anode over the dielectric surface, and a volume-discharge portion connecting the sliding-discharge portion to the cathode. The volume-discharge excites the lasing-gas mixture. A laser resonator is arranged to generate laser radiation from the excited gas mixture. The sliding-discharge has homogeneous, stable characteristics that are inherited by the volume-discharge. An ion-wind generator provides circulation of the lasing-gas mixture through the volume-discharge.Type: ApplicationFiled: July 20, 2006Publication date: January 24, 2008Inventors: Norbert Niemoeller, Igor Bragin, Rainer Paetzel, Rustem Osmanow, Juergen Witt
-
Patent number: 7308013Abstract: A Master Oscillator (MO)—Power Amplifier (PA) configuration (MOPA) can be used advantageously in an excimer laser system for micro-lithography applications, where semiconductor manufacturers demand powers of 40 W or more in order to support the throughput requirements of advanced lithography scanner systems. The timing of discharges in discharge chambers of the MO and PA can be precisely controlled using a common pulser to drive the respective chambers. The timing of the discharges further can be controlled through the timing of the pre-ionization in the chambers, or through control of the reset current in the final compression stages of the pulser. A common pulser, or separate pulser circuits, also can be actively controlled in time using a feedback loop, with precision timing being achieved through control of the pre-ionization in each individual discharge chamber. Yet another system provides for real-time compensation of time delay jitter of discharge pulses in the chambers.Type: GrantFiled: November 3, 2003Date of Patent: December 11, 2007Assignee: Lambda Physik AGInventors: Dirk Basting, Sergei Govorkov, Rainer Paetzel, Igor Bragin, Andreas Targsdorf
-
Patent number: 7245420Abstract: The lifetime of optical components used in deep-UV (DUV) excimer laser systems, including systems in a MOPA configuration, can be increased by reducing the intensity of pulses incident upon these components. In one approach, an output pulse can be “stretched” in order to reduce the peak power of the pulse. A pulse stretching component can be used, which can be mounted outside the laser enclosure with a horizontal beam path in order to provide a delay line with a minimum impact on the laser system footprint. The horizontal beam path also can minimize the number of optical components in the arm containing the high power beam. A beamsplitting prism can be used with the delay line to avoid the rapid degradation of coatings otherwise exposed to intense UV beams. The prism can expand the beam in the delay line in order to minimize beam intensity and losses due to reflection.Type: GrantFiled: January 18, 2007Date of Patent: July 17, 2007Assignee: Lambda Physik AGInventors: Sergei V. Govorkov, Gongxue Hua, Timur Misuryaev, Alexander O. Wiessner, Thomas Schmidt, Rainer Paetzel
-
Patent number: 7227881Abstract: A Master Oscillator (MO)—Power Amplifier (PA) configuration (MOPA) can be used advantageously in an excimer laser system for micro-lithography applications, where semiconductor manufacturers demand powers of 40 W or more in order to support the throughput requirements of advanced lithography scanner systems. A MOPA-based laser system can provide both high pulse energies and high spectral purity. A MOPA system can utilize a multi-pass PA, as well as a special beam path capable of reducing the amount of ASE (Amplified Spontaneous Emission) and feedback to the MO. Lithography scanner optics are primarily fused silica, such that the peak pulse power must be kept low to avoid material compaction when a MOPA system is used with lithography applications. This conflict between the demand for high average power and the low peak power requirement of the pulsed excimer laser source can be resolved by using a novel beam path to generate a sufficiently long pulse length.Type: GrantFiled: March 9, 2006Date of Patent: June 5, 2007Assignee: Lambda Physik AGInventors: Sergei V. Govorkov, Rainer Paetzel
-
Publication number: 20070115535Abstract: The lifetime of optical components used in deep-UV (DUV) excimer laser systems, including systems in a MOPA configuration, can be increased by reducing the intensity of pulses incident upon these components. In one approach, an output pulse can be “stretched” in order to reduce the peak power of the pulse. A pulse stretching component can be used, which can be mounted outside the laser enclosure with a horizontal beam path in order to provide a delay line with a minimum impact on the laser system footprint. The horizontal beam path also can minimize the number of optical components in the arm containing the high power beam. A beamsplitting prism can be used with the delay line to avoid the rapid degradation of coatings otherwise exposed to intense UV beams. The prism can expand the beam in the delay line in order to minimize beam intensity and losses due to reflection.Type: ApplicationFiled: January 18, 2007Publication date: May 24, 2007Inventors: Sergei Govorkov, Gongxue Hua, Timur Misuryaev, Alexander Wiessner, Thomas Schmidt, Rainer Paetzel
-
Patent number: 7184204Abstract: The lifetime of optical components used in deep-UV (DUV) excimer laser systems, including systems in a MOPA configuration, can be increased by reducing the intensity of pulses incident upon these components. In one approach, an output pulse can be “stretched” in order to reduce the peak power of the pulse. A pulse stretching component can be used, which can be mounted outside the laser enclosure with a horizontal beam path in order to provide a delay line with a minimum impact on the laser system footprint. The horizontal beam path also can minimize the number of optical components in the arm containing the high power beam. A beamsplitting prism can be used with the delay line to avoid the rapid degradation of coatings otherwise exposed to intense UV beams. The prism can expand the beam in the delay line in order to minimize beam intensity and losses due to reflection.Type: GrantFiled: June 30, 2004Date of Patent: February 27, 2007Assignee: Lambda Physik AGInventors: Sergei V. Govorkov, Gongxue Hua, Timur Misuryaev, Alexander O. Wiessner, Thomas Schmidt, Rainer Paetzel
-
Patent number: 7164703Abstract: Improved temperature stabilization can be obtained for pulsed gas discharge laser systems, such as excimer laser systems, using information about the energy dissipation of the system. Temperature sensors have a limited response time, which can lead to undesirable instability in gas temperature. By determining the heat energy provided to the discharge chamber over sufficiently small periods of time, a system controller can account for rapid variations in the temperature of the laser gas. The temperature regulation controller can adjust a flow of cooling liquid into the discharge chamber to account for these rapid variations on a scale that is much shorter than the response time of the temperature sensors. For variations over longer periods of time, the temperature regulation controller can utilize an active heater in contact with the laser tube to heat the laser tube body, thereby uniformly heating the gas in the tube.Type: GrantFiled: February 12, 2004Date of Patent: January 16, 2007Assignee: Lambda Physik AGInventor: Rainer Paetzel
-
Patent number: 7158553Abstract: Pulse parameters of a gas discharge laser system can be optimized and controlled for precision applications such as microlithography. Important laser pulse parameters typically vary in the beginning of a pulse burst, and the directionality of the output beam typically varies throughout the burst. In order to improve the performance of the laser system, the variation at the beginning of a pulse burst can be eliminated by extending the pulse pattern and shuttering the output during periods of significant parameter variation. A fast shutter such as an acousto-optical modulator can be used to prevent output during the burst transition processes. Elements such as acousto-optical cells also can be used in combination with a fast position sensor to steer the direction of the output beam, in order to adjust for variations in the direction of the beam between pulses in a burst.Type: GrantFiled: February 11, 2004Date of Patent: January 2, 2007Assignee: Lambda Physik AGInventors: Sergei V. Govorkov, Alexander O. Wiessner, Rainer Paetzel, Igor Bragin
-
Publication number: 20060171439Abstract: A Master Oscillator (MO)—Power Amplifier (PA) configuration (MOPA) can be used advantageously in an excimer laser system for micro-lithography applications, where semiconductor manufacturers demand powers of 40 W or more in order to support the throughput requirements of advanced lithography scanner systems. A MOPA-based laser system can provide both high pulse energies and high spectral purity. A MOPA system can utilize a multi-pass PA, as well as a special beam path capable of reducing the amount of ASE (Amplified Spontaneous Emission) and feedback to the MO. Lithography scanner optics are primarily fused silica, such that the peak pulse power must be kept low to avoid material compaction when a MOPA system is used with lithography applications. This conflict between the demand for high average power and the low peak power requirement of the pulsed excimer laser source can be resolved by using a novel beam path to generate a sufficiently long pulse length.Type: ApplicationFiled: March 9, 2006Publication date: August 3, 2006Inventors: Sergei Govorkov, Rainer Paetzel
-
Patent number: 6987790Abstract: Precise timing control can be obtained for a gas discharge laser, such as an excimer or molecular fluorine laser, using a timed trigger ionization. Instead of using a standard approach to control the timing of the emission or amplification of an optical pulse using the discharge of the main electrodes, the timing of which can only be controlled to within about 10 ns, a trigger ionization pulse applied subsequent to the charging of the main electrodes can be used to control the timing of the discharge, thereby decreasing the timing variations to about 1 ns. Since ionization of the laser gas can consume relatively small amounts of energy, such a circuit can be based on a fast, high-voltage, solid state switch that is virtually free of jitter. Trigger ionization also can be used to synchronize the timing of dual chambers in a MOPA configuration. In one such approach, ionization trigger can include at least a portion of the optical pulse from the oscillator in a MOPA configuration.Type: GrantFiled: February 11, 2004Date of Patent: January 17, 2006Assignee: Lambda Physik AGInventors: Sergei V. Govorkov, Rainer Paetzel, Igor Bragin, Rainer Desor, Andreas Targsdorf, Andriy Knysh
-
Publication number: 20060007978Abstract: Laser systems have a line-narrowed master oscillator and a power oscillator for amplifying the output of the master oscillator. The power oscillator includes optical arrangements for limiting the bandwidth of radiation that can be amplified. The limited amplification bandwidth of the power oscillator is relatively broad compared to that of the output of the master oscillator, but narrower than would be the case without the bandwidth limiting arrangements. The bandwidth narrowing arrangements of the power oscillator function primarily to restrict the bandwidth of amplified spontaneous emission generated by the power oscillator.Type: ApplicationFiled: June 1, 2005Publication date: January 12, 2006Inventors: Sergei Govorkov, Alexander Wiessner, Timur Misyuryaev, Alexander Jacobson, Gongxue Hua, Rainer Paetzel, Thomas Schroeder, Hans-Stephan Albrecht
-
Publication number: 20050271110Abstract: An excimer master-oscillator-power amplifier (MOPA) system includes two laser discharge units (LDUs). Optical modules are associated the LDUs for forming the master oscillator and the power amplifier. The discharge units are each assembled onto a chassis via a vibration-damping suspension. The optical modules are assembled on a frame that is separately attached to the chassis. Providing the separate frame for optical modules, mechanically isolated from the LDUs because of the vibration isolating suspension, minimizes transmission of vibrations from the LDUs to the optics modules.Type: ApplicationFiled: July 7, 2005Publication date: December 8, 2005Inventors: Rainer Paetzel, Thomas Schmidt, Michael Gehrke, Hans-Stephan Albrecht, Kay Zimmerman, Phil Dekker, Syb Leijenaar
-
Publication number: 20050083984Abstract: The lifetime of the laser gas in a laser system such as an excimer laser can be increased by changing the way in which the laser system is sealed. In addition to primary seals used to seal the reservoir chamber and discharge channel, at least one secondary seal can be used between the primary seals and the surrounding environment in order to further prevent permeation of impurities into the discharge chamber, as well as to create an intermediate gas volume. A controlled atmosphere can be generated in the intermediate gas volume, which can be at a slightly higher pressure than the surrounding environment in order to resist the flow of impurities through the secondary seal(s). Further, a flow of purge gas can be introduced into the controlled atmosphere in order to carry away any impurities that leak through the secondary seal(s).Type: ApplicationFiled: October 12, 2004Publication date: April 21, 2005Inventors: Igor Bragin, Rainer Paetzel, Juergen Baumler, Heiko Diesing, Helmer Beulshausen, Ulrich Rebhan
-
Publication number: 20050058172Abstract: The stability of a gas discharge in an excimer or molecular fluorine laser system can be improved by generating multiple discharge pulses in the resonator chamber, instead of a single discharge pulse. Each of these discharges can be optimized in both energy transfer and efficient coupling to the gas. The timing of each discharge can be controlled using, for example, a common pulser component along with appropriate circuitry to provide energy pulses to each of a plurality of segmented main discharge electrodes. Applying the energy to the segmented electrodes rather than to a standard discharge electrode pair allows for an optimization of the temporal shape of the resulting superimposed laser pulse. The optimized shape and higher stability can allow the laser system to operate at higher repetition rates, while minimizing the damage to system and/or downstream optics.Type: ApplicationFiled: September 8, 2004Publication date: March 17, 2005Inventors: Rainer Paetzel, Igor Bragin, Andreas Targsdorf, Vadim Berger, Rustem Osmanow