Patents by Inventor Rainer Pietig

Rainer Pietig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10998127
    Abstract: A superconductor magnet apparatus (2) includes a superconductor bulk magnet (9), a cryostat (7) and a ferromagnetic shielding body (11). The bulk magnet has a superconductor bore (10), an axis (z) of rotational symmetry, and a maximum outer diameter ODbm in a plane perpendicular to the z axis. The superconductor bore has a minimum cross-sectional area Sbo in a plane perpendicular to the z axis. The cryostat has a room temperature bore (8), the bulk magnet is arranged within the cryostat and the room temperature bore is arranged within the superconductor bore. The shielding body has a shielding bore (12), the bulk magnet is arranged within the shielding bore and the shielding body extends beyond the bulk magnet at each axial end by at least ODbm/3. For an average cross-sectional area Sfb of the shielding body, Sfb?2.5*Sbo, and the shielding body is arranged within the cryostat.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: May 4, 2021
    Assignee: BRUKER SWITZERLAND AG
    Inventors: Franck Borgnolutti, Stephen Alfred March, Joerg Hinderer, Rainer Pietig, Robert Schauwecker
  • Patent number: 10976391
    Abstract: A magnet arrangement having a hollow-cylindrical magnet element that has an axial length Lz,M and an inner radius Rin, is constructed from magnet segments arranged concentrically around the z-axis, and has a Halbach magnetization. At least one ring-shaped magnet element has a notched, hollow-cylindrical cutout extending circumferentially around the z-axis symmetrically with respect to the plane z=0, the axial extent Lz,A of the cutout being less than the axial length Lz,M of the magnet element. The cutout has a radial depth TA and an axial length Lz,A<Lz,M between the z-positions z=?zA to z=+zA. The radial depth TA and the axial length Lz,A of the cutout are to ensure that the remaining inhomogeneity of the homogenous magnetic field B0 in a predefined measurement volume having an axial plateau length LP in the center of the magnet arrangement does not exceed 10 ppm.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: April 13, 2021
    Assignee: BRUKER BIOSPIN GMBH
    Inventors: Rainer Pietig, Volker Niemann, Lukas Haenichen
  • Publication number: 20200335269
    Abstract: A superconductor magnet apparatus (2) includes a superconductor bulk magnet (9), a cryostat (7) and a ferromagnetic shielding body (11). The bulk magnet has a superconductor bore (10), an axis (z) of rotational symmetry, and a maximum outer diameter ODbm in a plane perpendicular to the z axis. The superconductor bore has a minimum cross-sectional area Sbo in a plane perpendicular to the z axis. The cryostat has a room temperature bore (8), the bulk magnet is arranged within the cryostat and the room temperature bore is arranged within the superconductor bore. The shielding body has a shielding bore (12), the bulk magnet is arranged within the shielding bore and the shielding body extends beyond the bulk magnet at each axial end by at least ODbm/3. For an average cross-sectional area Sfb of the shielding body, Sfb?2.5*Sbo, and the shielding body is arranged within the cryostat.
    Type: Application
    Filed: April 20, 2020
    Publication date: October 22, 2020
    Inventors: Franck BORGNOLUTTI, Stephen Alfred MARCH, Joerg HINDERER, Rainer PIETIG, Robert SCHAUWECKER
  • Publication number: 20200166591
    Abstract: A magnet arrangement having a hollow-cylindrical magnet element that has an axial length Lz,M and an inner radius Rin, is constructed from magnet segments arranged concentrically around the z-axis, and has a Halbach magnetization. At least one ring-shaped magnet element has a notched, hollow-cylindrical cutout extending circumferentially around the z-axis symmetrically with respect to the plane z=0, the axial extent Lz,A of the cutout being less than the axial length Lz,M of the magnet element. The cutout has a radial depth TA and an axial length Lz,A<Lz,M between the z-positions z=?zA to z=+zA. The radial depth TA and the axial length Lz,A of the cutout are to ensure that the remaining inhomogeneity of the homogenous magnetic field B0 in a predefined measurement volume having an axial plateau length LP in the center of the magnet arrangement does not exceed 10 ppm.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 28, 2020
    Inventors: Rainer PIETIG, Volker NIEMANN, Lukas HAENICHEN
  • Patent number: 10598745
    Abstract: A magnet arrangement (1) having a permanent magnet system with at least two ring-shaped magnet elements (2) which are made of individual magnet segments (3), are arranged cylindrically symmetrically and stacked on one another in the z direction and/or concentrically, and arranged such that the magnetization directions of the individual segments in the rings extend parallel in an x-y plane. The magnet elements align relative to one another in the z direction and have a Halbach magnetization Before final mounting in the magnetic resonance apparatus, the magnet elements are prefabricated as solid structures and their respective magnet segments are fixed undisplaceably relative to one another. But the magnet elements are displaceable relative to one another in the x-y plane, and are mounted rotatably and/or tiltably relative to one another.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: March 24, 2020
    Assignee: BRUKER BIOSPIN GMBH
    Inventors: Volker Niemann, Rainer Pietig, Lukas Haenichen
  • Publication number: 20200064424
    Abstract: A magnet arrangement (1) in a magnetic resonance apparatus having a permanent magnet system for generating a homogeneous magnetic field in a direction perpendicular to a z-axis in a measurement volume. The magnet system has at least two ring-shaped magnet elements (2) in a ring plane, which are arranged coaxially around the z-axis and are constructed from individual magnet segments (3) arranged next to one another in a Halbach configuration. The magnetization direction of at least two ring-shaped magnet elements deviates from the ring plane such that the component perpendicular to the ring plane varies cosinusoidally with the azimuthal angle of the respective ring-shaped magnet element. The magnetization of in each case two ring-shaped magnet elements is mirror-symmetrical with respect to one another, wherein the mirror plane is the central x-y-plane perpendicular to the z-axis. The disclosed arrangement provides a compact and lightweight permanent magnet arrangement for an MR apparatus.
    Type: Application
    Filed: August 22, 2019
    Publication date: February 27, 2020
    Inventors: Volker NIEMANN, Rainer PIETIG
  • Patent number: 10191130
    Abstract: A device for alternating examination of a measurement object (170) by means of MPI and MRI with two magnetic field-generating elements is presented. The device is characterized by a main magnet coil system with two coaxial partial coil systems (100a1, 100a2; 100b2, 100b1) arranged mirror-symmetrically relative to a central plane running perpendicularly to the z-axis through the first volume under investigation (162). The volumes under investigation are superimposed. A polarity reversal device (190) reverses the polarity of the current through a partial coil system and the main magnet coil system generates a homogeneous magnetic field of at least sixth order in the first volume under investigation when the partial coil systems have identical polarity, and a spatially strongly varying magnetic field profile in the second volume under investigation when the polarities are opposite. Repositioning of the measurement object is thereby simplified or can even be eliminated.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: January 29, 2019
    Assignee: BRUKER BIOSPIN MRI GMBH
    Inventors: Michael Heidenreich, Jochen Franke, Volker Niemann, Rainer Pietig
  • Patent number: 10180473
    Abstract: A magnetic resonance arrangement with a permanent magnet system and having magnet elements, pole piece elements and yoke elements of magnetic material arranged cylinder-symmetrically with respect to the z axis. The yoke elements have a first lid (11?) and a second lid (11?) and also a hollow cylindrical drum (12) arranged axially between the lids. The yoke elements enclose the measuring volume in the axial and radial direction. The magnet elements each include a pair of cylinder-symmetrical axial magnets (13?, 13?) and also radial magnet rings (14?, 14?). The axial magnets are each arranged axially adjoining the lids and are arranged radially within the radial magnet rings and respectively axially further away from the measuring volume than the radial magnet rings. The outer diameter of the axial magnets is less than or equal to the inner diameter of the radial magnet rings.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: January 15, 2019
    Assignee: BRUKER BIOSPIN GMBH
    Inventors: Lukas Haenichen, Rainer Pietig
  • Publication number: 20180292481
    Abstract: A magnet arrangement (1) having a permanent magnet system with at least two ring-shaped magnet elements (2) which are made of individual magnet segments (3), are arranged cylindrically symmetrically and stacked on one another in the z direction and/or concentrically, and arranged such that the magnetization directions of the individual segments in the rings extend parallel in an x-y plane. The magnet elements align relative to one another in the z direction and have a Halbach magnetization Before final mounting in the magnetic resonance apparatus, the magnet elements are prefabricated as solid structures and their respective magnet segments are fixed undisplaceably relative to one another. But the magnet elements are displaceable relative to one another in the x-y plane, and are mounted rotatably and/or tiltably relative to one another.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 11, 2018
    Inventors: Volker Niemann, Rainer Pietig, Lukas Haenichen
  • Patent number: 9927500
    Abstract: Device for alternating examination of a measurement object (103) by means of MPI and MRI within a magnetic system is characterized in that the magnetic system has a specified magnetic field profile, which is not temporally variable during the alternating examination, and both magnetic field generating elements (101,102; 201,202; 801a,801b,811,812) generate a magnetic field portion, in the first examination region (104) and in the second examination region (105), which is essential for the MRI operation and for the MPI operation, and in that there is a transport apparatus (106) by means of which the measurement object can be moved out of the first examination region and into the second examination region and/or vice versa. The total space requirement for both modalities is thus reduced and the complexity of an integrally designed hybrid system is minimized.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: March 27, 2018
    Assignee: Bruker BioSpin MRI GmbH
    Inventors: Michael Heidenreich, Jochen Franke, Volker Niemann, Rainer Pietig
  • Publication number: 20170254866
    Abstract: A magnetic resonance arrangement with a permanent magnet system and having magnet elements, pole piece elements and yoke elements of magnetic material arranged cylinder-symmetrically with respect to the z axis. The yoke elements have a first lid (11?) and a second lid (11?) and also a hollow cylindrical drum (12) arranged axially between the lids. The yoke elements enclose the measuring volume in the axial and radial direction. The magnet elements each include a pair of cylinder-symmetrical axial magnets (13?, 13?) and also radial magnet rings (14?, 14?). The axial magnets are each arranged axially adjoining the lids and are arranged radially within the radial magnet rings and respectively axially further away from the measuring volume than the radial magnet rings. The outer diameter of the axial magnets is less than or equal to the inner diameter of the radial magnet rings.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 7, 2017
    Inventors: Lukas Haenichen, Rainer Pietig
  • Patent number: 9424958
    Abstract: For the generation of multiple-energy X-ray radiation, an X-ray tube (10) for generating multiple-energy X-ray radiation includes an anode (12) and a filter (14). At least a first (16) and a second focal spot position (18) are offset from each other in an offset direction (20) transverse to an X-ray radiation projection direction. The filter includes a first plurality (22) of first portions (24) with first filtering characteristics for X-ray radiation and a second plurality (26) of second portions (28) with second filtering characteristics for X-ray radiation. The filter is a directional filter adapted in a such a way that at least a first X-ray beam (30) emanating from the first focal spot position at least partly passes through the filter unit via the first portions, and a second X-ray beam (32) emanating from the second focal spot position passes obliquely through the first and the second portions when passing through the filter unit.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: August 23, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gereon Vogtmeier, Rainer Pietig, Christoph Loef, Martin Kimutai Duerr, Gerald James Carlson
  • Publication number: 20150316628
    Abstract: A device for alternating examination of a measurement object (170) by means of MPI and MRI with two magnetic field-generating elements is presented. The device is characterized by a main magnet coil system with two coaxial partial coil systems (100a1, 100a2; 100b2, 100b1) arranged mirror-symmetrically relative to a central plane running perpendicularly to the z-axis through the first volume under investigation (162). The volumes under investigation are superimposed. A polarity reversal device (190) reverses the polarity of the current through a partial coil system and the main magnet coil system generates a homogeneous magnetic field of at least sixth order in the first volume under investigation when the partial coil systems have identical polarity, and a spatially strongly varying magnetic field profile in the second volume under investigation when the polarities are opposite. Repositioning of the measurement object is thereby simplified or can even be eliminated.
    Type: Application
    Filed: November 22, 2013
    Publication date: November 5, 2015
    Inventors: Michael Heidenreich, Jochen Franke, Volker Niemann, Rainer Pietig
  • Publication number: 20150285875
    Abstract: Device for alternating examination of a measurement object (103) by means of MPI and MRI within a magnetic system is characterized in that the magnetic system has a specified magnetic field profile, which is not temporally variable during the alternating examination, and both magnetic field generating elements (101,102; 201,202; 801a,801b,811,812) generate a magnetic field portion, in the first examination region (104) and in the second examination region (105), which is essential for the MRI operation and for the MPI operation, and in that there is a transport apparatus (106) by means of which the measurement object can be moved out of the first examination region and into the second examination region and/or vice versa. The total space requirement for both modalities is thus reduced and the complexity of an integrally designed hybrid system is minimized.
    Type: Application
    Filed: August 16, 2013
    Publication date: October 8, 2015
    Inventors: Michael Heidenreich, Jochen Franke, Volker Niemann, Rainer Pietig
  • Patent number: 9121954
    Abstract: Device and method for synchronously switching activating a first and second charge accumulation section (31, 32) for a duration of a first and second predetermined sub-frame and a first and second X-ray source until lapse of a predetermined time frame for each of the first and second charge accumulation section (31, 32) for the accumulation of a plurality of temporally distributed partial charges according to an origin of a respective one of the plurality of spatially distributed X-ray sources so as to establish a specific relation between the focal spot position and a rule for accumulating the respective partial measurements, e.g. temporally distributed partial charges, belonging to the same focal spot positions, and to keep the focal spot temperature low by only activating the focal spot for a limited time according to a sub-frame.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: September 1, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Rainer Pietig, Walter Ruetten, Christoph Herrmann
  • Publication number: 20140105361
    Abstract: The present invention relates to filtering of X-ray radiation generated at multiple focal spots. For the generation of multiple-energy X-ray radiation, an X-ray tube (10) for generating multiple-energy X-ray radiation is provided that comprises an anode (12) and a filter unit (14). The anode comprises at least a first (16) and a second focal spot position (18), which are offset from each other in an offset direction (20) transverse to an X-ray radiation projection direction.
    Type: Application
    Filed: May 30, 2012
    Publication date: April 17, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Gereon Vogtmeier, Rainer Pietig, Christoph Loef, Martin Kimutai Duerr, Gerald James Carlson
  • Patent number: 8654927
    Abstract: The present invention relates to X-ray generating technology in general. Providing an electron collecting element of an X-ray generating device statically may allow for the manufacture of X-ray systems with reduced moving parts and actuating parts, possibly reducing manufacturing costs and sources for failure. Consequently, an electron collecting element with increased thermal loadability is presented. According to the present invention, an electron collecting element (28) is provided, comprising a surface element (22) and a heat conducting element (26). The heat conducting element (26) comprises a first thermal conductivity in a first direction and at least a second thermal conductivity in at least a second direction. The first thermal conductivity is greater than the second thermal conductivity. The first direction is substantially perpendicular to the surface element (22).
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: February 18, 2014
    Assignee: Koninklijke Philips N.V.
    Inventor: Rainer Pietig
  • Patent number: 8576988
    Abstract: A distributed X-ray source (3) and an imaging system (1) comprising such an X-ray source (3) are proposed. The X-ray source (3) comprises an electron beam source arrangement (19) and an anode arrangement (17). The electron beam source arrangement (19) is adapted to emit electron beams (24) towards at least two locally distinct focal spots (27) on the anode arrangement (17). Therein, the X-ray source is adapted for displacing the anode arrangement (17) with respect to the electron beam source arrangement (19). While the provision of a plurality of focal spots allows acquisition of projection images under different projection angles thereby allowing reconstruction of three-dimensional X-ray images e.g. in tomosynthesis application, a displacement motion of the anode arrangement (17) with respect to the electron beam source arrangement (19) may allow for distributed heat flux to the anode arrangement thereby possibly reducing cooling requirements.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: November 5, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Astrid Lewalter, Rainer Pietig, Wolfgang Chrost
  • Patent number: 8553844
    Abstract: This invention relates to high power X-ray sources, in particular to those equipped with a rotating X-ray anode capable of delivering a higher short time peak power than conventional rotating x-ray anodes. This invention can overcome the thermal limitation of peak power by allowing fast rotation of the anode and by introducing a lightweight material with high thermal conductivity in the region adjacent to the focal track material. The fast rotation can be provided by using sections of the rotating anode disk made of anisotropic high specific strength materials with high thermal stability that can be specifically adapted to the high stresses of anode operation. Uses include high speed image acquisition for X-ray imaging, for example, of moving objects in real-time such as in medical radiography.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: October 8, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Astrid Lewalter, Rainer Pietig, Albert Langkamp, Heiko Richter, Thomas Behnisch, Werner Hufenbach, Rolf Karl Otto Behling, Christoph Bathe
  • Patent number: 8482949
    Abstract: A method and device for operating a device for high-voltage switching for driving capacitive loads, having a first and a second input terminal (11, 12) for applying a high voltage supply, such that a higher potential of the high-voltage supply may be applied to the first input terminal (11) and a lower potential may be applied to the second input terminal (12); a first and a second switch (S1, S2), connected in series between the first and the second input terminal (11, 12); a first and a second clamping diode (D3, D4), connected in series and in the same blocking direction between the first input terminal and the second input terminal, such that the first second clamping diode block with respect to the applied high voltage; a storage inductor Ls, which is connected with one of its terminals to a connecting point (13) of the both switches and with another terminal to a connecting point (14) of the both clamping diodes; and an output terminal (15) for connecting a capacitive load Cl, which output terminal is c
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: July 9, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Marc Maria Alex Bleukx, Christoph Leof, Rainer Pietig