Patents by Inventor Rainer Schödel

Rainer Schödel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8841498
    Abstract: The present invention relates to a catalyst for the hydrogenation of unsaturated hydrocarbons, in particular aromatics with a broad molecular weight range, a process for the production thereof and a process for hydrogenating unsaturated hydrocarbons.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: September 23, 2014
    Assignee: Shell Oil Company
    Inventors: Peter Birke, Reinhard Geyer, Jurgen Hunold, Peter Kraak, Rainer Schoedel
  • Patent number: 8822368
    Abstract: The present invention relates to supported Ni-catalysts optionally comprising Zn as a promoter, methods for the production of said catalysts and uses of said catalysts for the hydrogenation of a hydrocarbon feed.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: September 2, 2014
    Assignee: Shell Oil Company
    Inventors: Reinhard Geyer, Klaus Hoheisel, Patrick Vander Hoogerstraete, Jürgen Hunold, Michael Keck, Dirk Lose, Rainer Schödel
  • Publication number: 20130303812
    Abstract: The present invention relates to a catalyst for the hydrogenation of unsaturated hydrocarbons, in particular aromatics with a broad molecular weight range, a process for the production thereof and a process for hydrogenating unsaturated hydrocarbons.
    Type: Application
    Filed: July 18, 2013
    Publication date: November 14, 2013
    Inventors: Peter BIRKE, Reinhard GEYER, Jurgen HUNOLD, Peter KRAAK, Rainer SCHOEDEL
  • Patent number: 8518851
    Abstract: The present invention relates to a catalyst for the hydrogenation of unsaturated hydrocarbons, in particular aromatics with a broad molecular weight range, a process for the production thereof and a process for hydrogenating unsaturated hydrocarbons.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: August 27, 2013
    Assignee: Shell Oil Company
    Inventors: Peter Birke, Reinhard Geyer, Jürgen Hunold, Peter Kraak, Rainer Schoedel
  • Publication number: 20120065442
    Abstract: The present invention relates to supported Ni-catalysts optionally comprising Zn as a promoter, methods for the production of said catalysts and uses of said catalysts for the hydrogenation of a hydrocarbon feed.
    Type: Application
    Filed: May 7, 2010
    Publication date: March 15, 2012
    Inventors: Reinhard Geyer, Klaus Hoheisel, Patrick Vander Hoogerstraete, Jürgen Hunold, Michael Keck, Dirk Lose, Rainer Schödel
  • Publication number: 20100280294
    Abstract: The present invention relates to a catalyst for the hydrogenation of unsaturated hydrocarbons, in particular aromatics with a broad molecular weight range, a process for the production thereof and a process for hydrogenating unsaturated hydrocarbons.
    Type: Application
    Filed: October 17, 2008
    Publication date: November 4, 2010
    Inventors: Peter Birke, Reinhard Geyer, Jürgen Hunold, Peter Kraak, Rainer Schoedel
  • Patent number: 7518023
    Abstract: The invention relates to highly active spherical metal support catalysts with a metal content of 10 to 70% by mass, and a process for their production with the use of a mixture of polysaccharides and at least one metal compound which is dropped into a metal salt solution.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: April 14, 2009
    Assignee: Shell Internationale Research Maatschappij, B.V.
    Inventors: Reinhard Geyer, Rainer Schödel, Peter Birke, Jürgen Hunold
  • Patent number: 7342143
    Abstract: A method for the processing of a polyalphaolefin feedstock having a concentration of organic halide to thereby yield a polyalphaolefin end-product having a low concentration of organic halide. The method includes a hydrogenation step whereby the polyalphaolefin feedstock is contacted under suitable reaction conditions with a specific hydrogenation catalyst composition that is resistant to halide deactivation. The hydrogenation catalyst comprises a noble metal on a support material comprising silica and alumina. The hydrogenated polyalphaolefin feedstock is further processed to remove the hydrogen halide produced during the hydrogenation step to yield the polyalphaolefin end-product.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: March 11, 2008
    Assignee: Shell Oil Company
    Inventors: Peter Birke, Kristi Ann Morris, Hans-Dieter Neubauer, Rainer Schoedel
  • Patent number: 7172990
    Abstract: The invention relates to highly active spherical metal support catalysts with a metal content of 10 to 70% by mass, and a process for their production with the use of a mixture of polysaccharides and at least one metal compound which is dropped into a metal salt solution.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: February 6, 2007
    Assignee: Shell Internationale Research Maatschappiji, B.V.
    Inventors: Reinhard Geyer, Rainer Schödel, Peter Birke, Jürgen Hunold
  • Patent number: 7169726
    Abstract: The present invention relates to a catalyst which consists of a combination of zeolite and platinum or palladium on aluminum oxide. The catalyst is suitable for converting solid Fischer-Tropsch paraffins into microcrystalline waxes.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: January 30, 2007
    Assignee: KataLeuna GmbH Catalysts
    Inventors: Hans-Heino John, Peter Birke, Rainer Schödel
  • Publication number: 20050256351
    Abstract: A method for the processing of a polyalphaolefin feedstock having a concentration of organic halide to thereby yield a polyalphaolefin end-product having a low concentration of organic halide. The method includes a hydrogenation step whereby the polyalphaolefin feedstock is contacted under suitable reaction conditions with a specific hydrogenation catalyst composition that is resistant to halide deactivation. The hydrogenation catalyst comprises a noble metal on a support material comprising silica and alumina. The hydrogenated polyalphaolefin feedstock is further processed to remove the hydrogen halide produced during the hydrogenation step to yield the polyalphaolefin end-product.
    Type: Application
    Filed: September 9, 2004
    Publication date: November 17, 2005
    Inventors: Peter Birke, Kristi Morris, Hans-Dieter Neubauer, Rainer Schoedel
  • Patent number: 6680280
    Abstract: A hydrogenation catalyst and a process for its production, wherein the catalyst can be used for the hydrogenation of nitro groups in nitroaromatics to form the corresponding amines in the presence of water.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: January 20, 2004
    Assignee: Kataleuna GmbH Catalysts
    Inventors: Peter Birke, Reinhard Geyer, Peter Kraak, Rainer Schödel
  • Patent number: 5811628
    Abstract: A method for the hydrodechlorination of a reaction gas primarily composed of chlorinated hydrocarbons is carried out sequentially. A first step is advantageously carried out in a tubular reactor filled with catalyst and cooled externally, to maintain a temperature within a preferred range of 80.degree. to 230.degree. C. and a radial temperature difference of not more than 40.degree. C. Hydrogen is added to the tubular reactor with a hydrogen excess in a preferred range of 1.1 to 1.5 relative to the reaction gas, based on the stoichiometric consumption. The catalyst is present in a catalyst loading in a preferred range of 0.1 to 1.5 v/vh based on the volume of reaction gas. A fixed bed reactor is advantageously used for a second step, optimally connected in straight transit with the output of the reactor of the first step. The full-space reactor is maintained at a temperature within a preferred range of 200.degree. to 300.degree. C.
    Type: Grant
    Filed: July 20, 1995
    Date of Patent: September 22, 1998
    Assignees: Leuna-Katalysatoren GmbH, Buck Werke GmbH und Co.
    Inventors: Klaus Weber, Rainer Schoedel, Peter Birke, Reinhard Geyer, Ulrich Neumann, Werner Haertwig, Gerhard Vogel, Willi Sattelmayer, Rudolf Schumann, Anette Hoppe
  • Patent number: 5625110
    Abstract: A new hydrodehalogenation catalyst, as well as to its use for the hydrodechlorination of chlorinated hydrocarbons. The hydrodehalogenation catalyst, which converts halogenated hydrocarbons completely under mild conditions, has a considerably longer lifetime than do known catalysts and can be regenerated. In a method of hydrogenating dechlorination the catalyst works preferably under mild reaction conditions, with lifetimes of at least 2,500 hours and leads to reaction products, which can readily be used economically and thermally without further purification. The catalyst is a palladium aluminosilicate support catalyst, which is free of chlorinated compounds, has a palladium content of 0.5 to 8% by weight and a silica content of 1 to 50% by weight. The palladium concentration over the cross section of the support passes through a maximum in the region 50 to 250 .mu.m below the outer surface of the support, the maximum palladium concentration is 1.5 to 7 times the average palladium concentration.
    Type: Grant
    Filed: July 20, 1995
    Date of Patent: April 29, 1997
    Assignee: Leuna-Katalysatoren GmbH
    Inventors: Rainer Schoedel, Hans-Dieter Neubauer, Peter Birke, Hans-Dieter Berrouschot, Hans-Georg Friese, Klaus Weber, Ulrich Neumann, Hannelore Grundmann