Patents by Inventor Rajeev Ram
Rajeev Ram has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20200382215Abstract: An interposer device includes a substrate that includes a laser source chip interface region, a silicon photonics chip interface region, an optical amplifier module interface region. A fiber-to-interposer connection region is formed within the substrate. A first group of optical conveyance structures is formed within the substrate to optically connect a laser source chip to a silicon photonics chip when the laser source chip and the silicon photonics chip are interfaced to the substrate. A second group of optical conveyance structures is formed within the substrate to optically connect the silicon photonics chip to an optical amplifier module when the silicon photonics chip and the optical amplifier module are interfaced to the substrate. A third group of optical conveyance structures is formed within the substrate to optically connect the optical amplifier module to the fiber-to-interposer connection region when the optical amplifier module is interfaced to the substrate.Type: ApplicationFiled: August 18, 2020Publication date: December 3, 2020Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden, Michael Davenport
-
Publication number: 20200355880Abstract: An optical input/output chiplet is disposed on a first package substrate. The optical input/output chiplet includes one or more supply optical ports for receiving continuous wave light. The optical input/output chiplet includes one or more transmit optical ports through which modulated light is transmitted. The optical input/output chiplet includes one or more receive optical ports through which modulated light is received by the optical input/output chiplet. An optical power supply module is disposed on a second package substrate. The second package substrate is separate from the first package substrate. The optical power supply module includes one or more output optical ports through which continuous wave laser light is transmitted. A set of optical fibers optically connect the one or more output optical ports of the optical power supply module to the one or more supply optical ports of the optical input/output chiplet.Type: ApplicationFiled: July 23, 2020Publication date: November 12, 2020Inventors: Alexandra Wright, Mark Wade, Chen Sun, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Roy Edward Meade, Derek Van Orden
-
Patent number: 10771160Abstract: A laser module includes a laser source and an optical marshalling module. The laser source is configured to generate and output a plurality of laser beams. The plurality of laser beams have different wavelengths relative to each other. The different wavelengths are distinguishable to an optical data communication system. The optical marshalling module is configured to receive the plurality of laser beams from the laser source and distribute a portion of each of the plurality of laser beams to each of a plurality of optical output ports of the optical marshalling module, such that all of the different wavelengths of the plurality of laser beams are provided to each of the plurality of optical output ports of the optical marshalling module. An optical amplifying module can be included to amplify laser light output from the optical marshalling module and provide the amplified laser light as output from the laser module.Type: GrantFiled: July 14, 2017Date of Patent: September 8, 2020Assignee: Ayar Labs, Inc.Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden
-
Patent number: 10749603Abstract: An interposer device includes a substrate that includes a laser source chip interface region, a silicon photonics chip interface region, an optical amplifier module interface region. A fiber-to-interposer connection region is formed within the substrate. A first group of optical conveyance structures is formed within the substrate to optically connect a laser source chip to a silicon photonics chip when the laser source chip and the silicon photonics chip are interfaced to the substrate. A second group of optical conveyance structures is formed within the substrate to optically connect the silicon photonics chip to an optical amplifier module when the silicon photonics chip and the optical amplifier module are interfaced to the substrate. A third group of optical conveyance structures is formed within the substrate to optically connect the optical amplifier module to the fiber-to-interposer connection region when the optical amplifier module is interfaced to the substrate.Type: GrantFiled: November 16, 2018Date of Patent: August 18, 2020Assignee: Ayar Labs, Inc.Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden, Michael Davenport
-
Publication number: 20200169056Abstract: A laser light generator is configured to generate one or more wavelengths of continuous wave laser light. The laser light generator is configured to collectively and simultaneously transmit each of the wavelengths of continuous wave laser light through an optical output of the laser light generator as a laser light supply. An optical fiber is connected to receive the laser light supply from the optical output of the laser light generator. An optical distribution network has an optical input connected to receive the laser light supply from the optical fiber. The optical distribution network is configured to transmit the laser light supply to each of one or more optical transceivers and/or optical sensors. The laser light generator is physically separate from each of the one or more optical transceivers and/or optical sensors.Type: ApplicationFiled: January 30, 2020Publication date: May 28, 2020Inventors: Milos Popovic, Rajeev Ram, Vladimir Stojanovic, Chen Sun, Mark Taylor Wade, Alexandra Carroll Wright
-
Patent number: 10581215Abstract: A laser light generator is configured to generate one or more wavelengths of continuous wave laser light. The laser light generator is configured to collectively and simultaneously transmit each of the wavelengths of continuous wave laser light through an optical output of the laser light generator as a laser light supply. An optical fiber is connected to receive the laser light supply from the optical output of the laser light generator. An optical distribution network has an optical input connected to receive the laser light supply from the optical fiber. The optical distribution network is configured to transmit the laser light supply to each of one or more optical transceivers and/or optical sensors. The laser light generator is physically separate from each of the one or more optical transceivers and/or optical sensors.Type: GrantFiled: November 19, 2018Date of Patent: March 3, 2020Assignee: Ayar Labs, Inc.Inventors: Milos Popovic, Rajeev Ram, Vladimir Stojanovic, Chen Sun, Mark Taylor Wade, Alexandra Carroll Wright
-
Publication number: 20190245100Abstract: Method and structural embodiments are described which provide an integrated structure using polysilicon material having different optical properties in different regions of the structure.Type: ApplicationFiled: April 15, 2019Publication date: August 8, 2019Inventors: Roy Meade, Karan Mehta, Efraim Megged, Jason Orcutt, Milos Popovic, Rajeev Ram, Jeffrey Shainline, Zvi Sternberg, Vladimir Stojanovic, Ofer Tehar-Zahav
-
Patent number: 10312388Abstract: Method and structural embodiments are described which provide an integrated structure using polysilicon material having different optical properties in different regions of the structure.Type: GrantFiled: August 16, 2017Date of Patent: June 4, 2019Assignees: Micron Technology, Inc., Massachusetts Institute of TechnologyInventors: Roy Meade, Karan Mehta, Efraim Megged, Jason Orcutt, Milos Popovic, Rajeev Ram, Jeffrey Shainline, Zvi Sternberg, Vladimir Stojanovic, Ofer Tehar-Zahav
-
Publication number: 20190089461Abstract: An interposer device includes a substrate that includes a laser source chip interface region, a silicon photonics chip interface region, an optical amplifier module interface region. A fiber-to-interposer connection region is formed within the substrate. A first group of optical conveyance structures is formed within the substrate to optically connect a laser source chip to a silicon photonics chip when the laser source chip and the silicon photonics chip are interfaced to the substrate. A second group of optical conveyance structures is formed within the substrate to optically connect the silicon photonics chip to an optical amplifier module when the silicon photonics chip and the optical amplifier module are interfaced to the substrate. A third group of optical conveyance structures is formed within the substrate to optically connect the optical amplifier module to the fiber-to-interposer connection region when the optical amplifier module is interfaced to the substrate.Type: ApplicationFiled: November 16, 2018Publication date: March 21, 2019Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden, Michael Davenport
-
Publication number: 20190089116Abstract: A laser light generator is configured to generate one or more wavelengths of continuous wave laser light. The laser light generator is configured to collectively and simultaneously transmit each of the wavelengths of continuous wave laser light through an optical output of the laser light generator as a laser light supply. An optical fiber is connected to receive the laser light supply from the optical output of the laser light generator. An optical distribution network has an optical input connected to receive the laser light supply from the optical fiber. The optical distribution network is configured to transmit the laser light supply to each of one or more optical transceivers and/or optical sensors. The laser light generator is physically separate from each of the one or more optical transceivers and/or optical sensors.Type: ApplicationFiled: November 19, 2018Publication date: March 21, 2019Inventors: Milos Popovic, Rajeev Ram, Vladimir Stojanovic, Chen Sun, Mark Taylor Wade, Alexandra Carroll Wright
-
Patent number: 10135218Abstract: A laser light generator is configured to generate one or more wavelengths of continuous wave laser light. The laser light generator is configured to collectively and simultaneously transmit each of the wavelengths of continuous wave laser light through an optical output of the laser light generator as a laser light supply. An optical fiber is connected to receive the laser light supply from the optical output of the laser light generator. An optical distribution network has an optical input connected to receive the laser light supply from the optical fiber. The optical distribution network is configured to transmit the laser light supply to each of one or more optical transceivers and/or optical sensors. The laser light generator is physically separate from each of the one or more optical transceivers and/or optical sensors.Type: GrantFiled: September 27, 2016Date of Patent: November 20, 2018Assignee: Ayar Labs, Inc.Inventors: Milos Popovic, Rajeev Ram, Vladimir Stojanovic, Chen Sun, Mark Taylor Wade, Alexandra Carroll Wright
-
Publication number: 20180217122Abstract: A system for molecular mapping includes a semiconductor substrate defining a reservoir to receive a sample of molecules and a nanofluidic channel in fluid communication with the reservoir. The system also includes a plurality of electrodes, in electrical communication with the nanofluidic channel, to electrophoretically trap the sample of molecules in the nanofluidic channel. At least one avalanche photodiode is fabricated in the semiconductor substrate and disposed within an optical near-field of the nanofluidic channel to detect fluorescence emission from at least one molecule in the sample of molecules.Type: ApplicationFiled: January 30, 2018Publication date: August 2, 2018Inventors: Huaiyu Meng, Rajeev Ram
-
Publication number: 20180019820Abstract: A laser module includes a laser source and an optical marshalling module. The laser source is configured to generate and output a plurality of laser beams. The plurality of laser beams have different wavelengths relative to each other. The different wavelengths are distinguishable to an optical data communication system. The optical marshalling module is configured to receive the plurality of laser beams from the laser source and distribute a portion of each of the plurality of laser beams to each of a plurality of optical output ports of the optical marshalling module, such that all of the different wavelengths of the plurality of laser beams are provided to each of the plurality of optical output ports of the optical marshalling module. An optical amplifying module can be included to amplify laser light output from the optical marshalling module and provide the amplified laser light as output from the laser module.Type: ApplicationFiled: July 14, 2017Publication date: January 18, 2018Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden
-
Publication number: 20170365726Abstract: Method and structural embodiments are described which provide an integrated structure using polysilicon material having different optical properties in different regions of the structure.Type: ApplicationFiled: August 16, 2017Publication date: December 21, 2017Inventors: Roy Meade, Karan Mehta, Efraim Megged, Jason Orcutt, Milos Popovic, Rajeev Ram, Jeffrey Shainline, Zvi Sternberg, Vladimir Stojanovic, Ofer Tehar-Zahav
-
Patent number: 9768330Abstract: Method and structural embodiments are described which provide an integrated structure using polysilicon material having different optical properties in different regions of the structure.Type: GrantFiled: August 25, 2014Date of Patent: September 19, 2017Assignees: Micron Technology, Inc., Massachusetts Institute of TechnologyInventors: Roy Meade, Karan Mehta, Efraim Megged, Jason Orcutt, Milos Popovic, Rajeev Ram, Jeffrey Shainline, Zvi Sternberg, Vladimir Stojanovic, Ofer Tehar-Zahav
-
Patent number: 9647192Abstract: A solar concentrator assembly includes a tripod, a base, a reflective dish, a receptacle, and a thermoelectric module or a heat transfer module. The tripod includes legs and a top tripod connector coupled to top portions thereof. The base includes a rod coupled to the tripod; a bottom support structure coupled to the rod; a top support structure coupled to the bottom support structure; an extension coupled to the bottom support structure and the top support structure; and a cap with recesses mounted to the top support structure. The reflective dish includes support rods received within the recesses; a pliable material forms panels, wherein the support rods are inserted into seams between the panels; and a reflective material disposed on the pliable material. The receptacle is connected to the base and disposed within the reflective dish. The thermoelectric module or the heat transfer module is partially disposed within the receptacle.Type: GrantFiled: February 12, 2016Date of Patent: May 9, 2017Assignee: One Earth Designs Inc.Inventors: Scot G. Frank, Catlin Powers, Amy Qian, Orian Z. Welling, Brad Simpson, Reja Amatya, Rajeev Ram
-
Publication number: 20170098917Abstract: A laser light generator is configured to generate one or more wavelengths of continuous wave laser light. The laser light generator is configured to collectively and simultaneously transmit each of the wavelengths of continuous wave laser light through an optical output of the laser light generator as a laser light supply. An optical fiber is connected to receive the laser light supply from the optical output of the laser light generator. An optical distribution network has an optical input connected to receive the laser light supply from the optical fiber. The optical distribution network is configured to transmit the laser light supply to each of one or more optical transceivers and/or optical sensors. The laser light generator is physically separate from each of the one or more optical transceivers and/or optical sensors.Type: ApplicationFiled: September 27, 2016Publication date: April 6, 2017Inventors: Milos Popovic, Rajeev Ram, Vladimir Stojanovic, Chen Sun, Mark Taylor Wade, Alexandra Carroll Wright
-
Publication number: 20160343931Abstract: A solar concentrator assembly includes a tripod, a base, a reflective dish, a receptacle, and a thermoelectric module or a heat transfer module. The tripod includes legs and a top tripod connector coupled to top portions thereof. The base includes a rod coupled to the tripod; a bottom support structure coupled to the rod; a top support structure coupled to the bottom support structure; an extension coupled to the bottom support structure and the top support structure; and a cap with recesses mounted to the top support structure. The reflective dish includes support rods received within the recesses; a pliable material forms panels, wherein the support rods are inserted into seams between the panels; and a reflective material disposed on the pliable material. The receptacle is connected to the base and disposed within the reflective dish. The thermoelectric module or the heat transfer module is partially disposed within the receptacle.Type: ApplicationFiled: February 12, 2016Publication date: November 24, 2016Inventors: Scot G. Frank, Catlin Powers, Amy Qian, Orian Z. Welling, Brad Simpson, Reja Amatya, Rajeev Ram
-
Patent number: 9422409Abstract: Active devices such as pumps and mixers have been fabricated in plastic-PDMS hybrid devices. By utilizing functionalized bis-silane primers, bond strength between Polycarbonate or PMMA and PDMS improved in dry and aqueous environments. Plastic-primer-PDMS layers exposed to acid and base solutions at 70° C. for 2 hours showed no signs of delamination at 30 psi for pH ?1 to 15 and 60 psi for pH 0 to 15. A peristaltic pump fabricated in polycarbonate achieved consistent flow rates up to peristaltic cycle frequencies of 10 Hz in water, 1OM HCl, and 1OM NaOH solutions.Type: GrantFiled: October 9, 2009Date of Patent: August 23, 2016Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGYInventors: S. Kevin Lee, Harry Lee, J. Rajeev Ram
-
Patent number: 9291365Abstract: A solar concentrator assembly includes a tripod, a base, a reflective dish, a receptacle, and a thermoelectric module or a heat transfer module. The tripod includes legs and a top tripod connector coupled to top portions thereof. The base includes a rod coupled to the tripod; a bottom support structure coupled to the rod; a top support structure coupled to the bottom support structure; an extension coupled to the bottom support structure and the top support structure; and a cap with recesses mounted to the top support structure. The reflective dish includes support rods received within the recesses; a pliable material forms panels, wherein the support rods are inserted into seams between the panels; and a reflective material disposed on the pliable material. The receptacle is connected to the base and disposed within the reflective dish. The thermoelectric module or the heat transfer module is partially disposed within the receptacle.Type: GrantFiled: January 12, 2011Date of Patent: March 22, 2016Assignee: One Earth Designs Inc.Inventors: Scot G. Frank, Catlin Powers, Amy Qian, Orian Z. Welling, Brad Simpson, Reja Amatya, Rajeev Ram