Patents by Inventor Rajen Manicon Murugan

Rajen Manicon Murugan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180301428
    Abstract: A millimeter wave integrated circuit (IC) chip. The IC chip comprises an IC die and a wire bond ball grid array package encapsulating the IC die. The wire bond ball grid array package comprises a solder ball array, a millimeter wave transmit channel, and a millimeter wave receive channel, wherein each millimeter wave transmit and receive channel electrically couples the IC die to a signal ball of the solder ball array and is configured to resonate at an operating frequency band of the millimeter wave IC chip.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 18, 2018
    Inventors: Rajen Manicon Murugan, Minhong Mi, Gary Paul Morrison, Jie Chen, Kenneth Robert Rhyner, Stanley Craig Beddingfield, Chittranjan Mohan Gupta, Django Earl Trombley
  • Patent number: 9941228
    Abstract: A millimeter wave integrated circuit (IC) chip. The IC chip comprises an IC die and a wire bond ball grid array package encapsulating the IC die. The wire bond ball grid array package comprises a solder ball array, a millimeter wave transmit channel, and a millimeter wave receive channel, wherein each millimeter wave transmit and receive channel electrically couples the IC die to a signal ball of the solder ball array and is configured to resonate at an operating frequency band of the millimeter wave IC chip.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 10, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rajen Manicon Murugan, Minhong Mi, Gary Paul Morrison, Jie Chen, Kenneth Robert Rhyner, Stanley Craig Beddingfield, Chittranjan Mohan Gupta, Django Earl Trombley
  • Publication number: 20170229408
    Abstract: A millimeter wave integrated circuit (IC) chip. The IC chip comprises an IC die and a wire bond ball grid array package encapsulating the IC die. The wire bond ball grid array package comprises a solder ball array, a millimeter wave transmit channel, and a millimeter wave receive channel, wherein each millimeter wave transmit and receive channel electrically couples the IC die to a signal ball of the solder ball array and is configured to resonate at an operating frequency band of the millimeter wave IC chip.
    Type: Application
    Filed: April 25, 2017
    Publication date: August 10, 2017
    Inventors: Rajen Manicon MURUGAN, Minhong MI, Gary Paul MORRISON, Jie CHEN, Kenneth Robert RHYNER, Stanley Craig BEDDINGFIELD, Chittranjan Mohan GUPTA, Django Earl TROMBLEY
  • Patent number: 9666553
    Abstract: A millimeter wave integrated circuit (IC) chip. The IC chip comprises an IC die and a wire bond ball grid array package encapsulating the IC die. The wire bond ball grid array package comprises a solder ball array, a millimeter wave transmit channel, and a millimeter wave receive channel, wherein each millimeter wave transmit and receive channel electrically couples the IC die to a signal ball of the solder ball array and is configured to resonate at an operating frequency band of the millimeter wave IC chip.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: May 30, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rajen Manicon Murugan, Minhong Mi, Gary Paul Morrison, Jie Chen, Kenneth Robert Rhyner, Stanley Craig Beddingfield, Chittranjan Mohan Gupta, Django Earl Trombley
  • Publication number: 20150364816
    Abstract: A millimeter wave integrated circuit (IC) chip. The IC chip comprises an IC die and a wire bond ball grid array package encapsulating the IC die. The wire bond ball grid array package comprises a solder ball array, a millimeter wave transmit channel, and a millimeter wave receive channel, wherein each millimeter wave transmit and receive channel electrically couples the IC die to a signal ball of the solder ball array and is configured to resonate at an operating frequency band of the millimeter wave IC chip.
    Type: Application
    Filed: June 15, 2015
    Publication date: December 17, 2015
    Inventors: Rajen Manicon MURUGAN, Minhong MI, Gary Paul MORRISON, Jie CHEN, Kenneth Robert RHYNER, Stanley Craig BEDDINGFIELD, Chittranjan Mohan GUPTA, Django Earl TROMBLEY
  • Patent number: 8369941
    Abstract: A method for producing a computationally efficient system that reduces the number of iterations required to generate a conductivity image pattern of a subsurface object, and its attendant conductivity distribution, through a solution to the system of field equations that simultaneously satisfies all of the boundary conditions and conserves internal current flux densities.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: February 5, 2013
    Inventors: Alvin Wexler, Rajen Manicon Murugan, Zhong Zheng, Misty O'Connor
  • Publication number: 20100290675
    Abstract: A method for producing a computationally efficient system that reduces the number of iterations required to generate a conductivity image pattern of a subsurface object, and its attendant conductivity distribution, through a solution to the system of field equations that simultaneously satisfies all of the boundary conditions and conserves internal current flux densities.
    Type: Application
    Filed: July 27, 2007
    Publication date: November 18, 2010
    Inventors: Alvin Wexler, Patrick Adrian O'Connor, Rajen Manicon Murugan, Zhong Zheng, Misty O'Connor
  • Patent number: 6745070
    Abstract: A method of imaging an object contained in a medium, having a specific impedance which is different from the specific impedance of the medium, comprising applying current to the medium at various locations at a surface of the medium, extracting current at other locations, detecting voltages produced by the current which has passed through the medium from the surface of the medium at various other locations, successively determining a location and shape and conductivity of the object with increasing accuracy by processing values of the detected voltages, determining a region in the medium in which the object is located from values of the detected voltages which are within upper and lower threshold values, applying acceleration procedures to the conductivities within the region in the course of iterative refinement of these values in the course of an imaging procedure, subsequently restricting further determination of the location of the object with increasing accuracy to voltages obtained from the region of th
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: June 1, 2004
    Assignee: Tasc Ltd.
    Inventors: Alvin Wexler, Zhen Mu, Rajen Manicon Murugan, Guye S. Strobel
  • Publication number: 20020138019
    Abstract: A method of imaging an object contained in a medium, having a specific impedance which is different from the specific impedance of the medium, comprising applying current to the medium at various locations at a surface of the medium, extracting current at other locations, detecting voltages produced by the current which has passed through the medium from the surface of the medium at various other locations, successively determining a location and shape and conductivity of the object with increasing accuracy by processing values of the detected voltages, determining a region in the medium in which the object is located from values of the detected voltages which are within upper and lower threshold values, applying acceleration procedures to the conductivities within the region in the course of iterative refinement of these values in the course of an imaging procedure, subsequently restricting further determination of the location of the object with increasing accuracy to voltages obtained from the region of th
    Type: Application
    Filed: March 9, 2001
    Publication date: September 26, 2002
    Inventors: Alvin Wexler, Zhen Mu, Guye S. Strobel, Rajen Manicon Murugan
  • Publication number: 20020106681
    Abstract: The HDEIT method of the present invention permits one to use a variety of such indices to distinguish a tumour from normal surrounding tissue because it produces the value of the tissue characteristic at each zone in the tissues measured in accordance with the applied frequency. The tumour distinguishing analysis may be applied to the HDEIT image, or may be applied to the data that comprise the image without generating the image. Such methods are intended to permit the detection of tumors that are too small to be accurately seen in an image, but produce a large enough index for diagnostic purposes. One can apply this capability of the HDEIT method in a number of ways. For example, one can quickly scan the breast at low resolution, perform a distinguishing analysis for tumors, and then only perform a longer-duration high resolution scan if there was an indication of a diagnostically significant area to be examined.
    Type: Application
    Filed: November 26, 2001
    Publication date: August 8, 2002
    Inventors: Alvin Wexler, Rajen Manicon Murugan