Patents by Inventor Rajendra K. Sadangi

Rajendra K. Sadangi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120313269
    Abstract: A method and apparatus for producing metastable nanostructured materials employing a ceramic shroud surrounding a plasma flame having a steady state reaction zone into which an aerosol or liquid jet of solution precursor or powder material is fed, causing the material to be pyrolyzed, melted, or vaporized, followed by quenching to form a metastable nanosized powder that has an amorphous (short-range ordered), or metastable microsized powder that has a crystalline (long-range ordered) structure, respectively.
    Type: Application
    Filed: March 6, 2012
    Publication date: December 13, 2012
    Inventors: Bernard H. Kear, Vijay Shukla, Rajendra K. Sadangi
  • Publication number: 20070259768
    Abstract: A nanocomposite ceramic includes a uniform combination of a ceramic spinel phase and an alumina phase, wherein each phase exhibits a grain size in the range of from about 0.1 nm to 10,000 nm.
    Type: Application
    Filed: November 9, 2006
    Publication date: November 8, 2007
    Inventors: Bernard H. Kear, Bryan W. McEnerney, Dale E. Niesz, Rajendra K. Sadangi
  • Patent number: 6214079
    Abstract: A method for fabricating a triphasic composite such as a WC/Co/diamond composite with a high volume fraction of diamond in a WC/Co matrix. The method involves sintering of a WC/Co powder compact to develop a porous preform, which displays some rigidity and strength, infiltrating the porous preform with a controlled distribution of carbon, and high pressure/high temperature treatment of the carbon-containing WC/Co preform to transform the carbon to diamond. The distribution of diamond in the composite can be functionally graded to provide a WC/Co core and a diamond-enriched surface, wherein all three phases form an interconnected structure in three dimensions. Such a tricontinuous structure combines high strength and toughness with superior wear resistance, making it attractive for applications in machine tools and drill bits.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: April 10, 2001
    Assignee: Rutgers, The State University
    Inventors: Bernard H. Kear, Rajendra K. Sadangi, Larry E. McCandlish, Oleg Voronov
  • Patent number: 6090343
    Abstract: A method for fabricating a triphasic composite such as a WC/Co/diamond composite with a high volume fraction of diamond in a WC/Co matrix. The method involves sintering of a WC/Co powder compact to develop a porous preform, which displays some rigidity and strength, infiltrating the porous preform with a controlled distribution of carbon, and high pressure/high temperature treatment of the carbon-containing WC/Co preform to transform the carbon to diamond. The distribution of diamond in the composite can be functionally graded to provide a WC/Co core and a diamond-enriched surface, wherein all three phases form an interconnected structure in three dimensions. Such a tricontinuous structure combines high strength and toughness with superior wear resistance, making it attractive for applications in machine tools and drill bits.
    Type: Grant
    Filed: March 25, 1998
    Date of Patent: July 18, 2000
    Assignee: Rutgers University
    Inventors: Bernard H. Kear, Rajendra K. Sadangi, Larry E. McCandlish, Oleg Voronov
  • Patent number: 5841045
    Abstract: A low melting point alloy is used to sinter metal carbide particles. The alloy is a eutectic-like alloy formed from a binding metal such as iron, cobalt or nickel, in combination with vanadium and chromium. The alloy is preferably formed by forming two separate alloys and blending these together. The first alloy is formed by spray drying together a solution of a binding metal salt such as a cobalt salt with a solution of a chromium salt. The formed particles are then carburized to form a cobalt-chromium-carbon alloy. A separate vanadium alloy is formed in the same manner. The two are combined to establish the amount of chromium and vanadium desired, and this, in turn, is used to sinter metal carbide parts. This permits sintering of the metal carbide parts at temperatures less than 1250.degree. C. and in turn significantly inhibits grain grown without a significant decrease in toughness. It is particularly adapted to form carbide products wherein the carbide grain size is as low as 120 nanometers.
    Type: Grant
    Filed: August 23, 1995
    Date of Patent: November 24, 1998
    Assignees: Nanodyne Incorporated, Rutgers University
    Inventors: Larry E. McCandlish, Rajendra K. Sadangi