Patents by Inventor Rajendra Kumar reddy.S

Rajendra Kumar reddy.S has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10545189
    Abstract: In one embodiments, a system comprises: a plurality of scan test chains configured to perform test operations at a first clock speed; a central test controller for controlling testing by the scan test chains; and an interface configured to generate instructions to direct central test controller. The interface communicates with the centralized test controller at the first clock speed and an external scan input at a second clock speed. The second clock speed can be faster than the first clock speed. The instructions communicated to the central controller can be directions associated with sequential scan compression/decompression operations. In one exemplary implementation, the interface further comprise a mode state machine used to generate the mode control instructions and a test register state machine that generate test state control instructions, wherein the test mode control instructions and the test state control instructions direct operations of the centralized test controller.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: January 28, 2020
    Assignee: NVIDIA CORPORATION
    Inventors: Milind Sonawane, Amit Sanghani, Jonathon E. Colburn, Bala Tarun Nelapatla, Shantanu Sarangi, Rajendra Kumar reddy.S, Sailendra Chadalavada
  • Patent number: 10451676
    Abstract: A method for testing. An external clock frequency is generated. Test data is supplied over a plurality of SSI connections clocked at the external clock frequency, wherein the test data is designed for testing a logic block. A DSTA module is configured for the logic block that is integrated within a chip to a bandwidth ratio, wherein the bandwidth ratio defines the plurality of SSI connections and a plurality of PSI connections of the chip. The external clock frequency is divided down using the bandwidth ratio to generate an internal clock frequency, wherein the bandwidth ratio defines the external clock frequency and the internal clock frequency. The test data is scanned over the plurality of PSI connections clocked at the internal clock frequency according to the bandwidth ratio, wherein the plurality of PSI connections is configured for inputting the test data to the plurality of scan chains.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: October 22, 2019
    Assignee: Nvidia Corporation
    Inventors: Milind Sonawane, Amit Sanghani, Shantanu Sarangi, Jonathon E. Colburn, Bala Tarun Nelapatla, Sailendra Chadalavda, Rajendra Kumar Reddy.S, Mahmut Yilmaz, Pavan Kumar Datla Jagannadha
  • Patent number: 10317463
    Abstract: A method for testing. The method includes sending a single instruction over a JTAG interface to a JTAG controller to select a first internal test data register of a plurality of data registers. The method includes programming the first internal test data register using the JTAG interface to configure mode control access and state control access for a test controller implementing a sequential scan architecture to test a chip at a system level.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: June 11, 2019
    Assignee: NVIDIA CORPORATION
    Inventors: Milind Sonawane, Amit Sanghani, Jonathon E. Colburn, Rajendra Kumar reddy.S, Bala Tarun Nelapatla, Sailendra Chadalavda, Shantanu Sarangi
  • Publication number: 20170115346
    Abstract: A method for testing. The method includes sending a single instruction over a JTAG interface to a JTAG controller to select a first internal test data register of a plurality of data registers. The method includes programming the first internal test data register using the JTAG interface to configure mode control access and state control access for a test controller implementing a sequential scan architecture to test a chip at a system level.
    Type: Application
    Filed: October 27, 2016
    Publication date: April 27, 2017
    Inventors: Milind Sonawane, Amit Sanghani, Jonathon E. Colburn, Rajendra Kumar reddy.S, Bala Tarun Nelapatla, Sailendra Chadalavda, Shantanu Sarangi
  • Publication number: 20170115353
    Abstract: In one embodiments, a system comprises: a plurality of scan test chains configured to perform test operations at a first clock speed; a central test controller for controlling testing by the scan test chains; and an interface configured to generate instructions to direct central test controller. The interface communicates with the centralized test controller at the first clock speed and an external scan input at a second clock speed. The second clock speed can be faster than the first clock speed. The instructions communicated to the central controller can be directions associated with sequential scan compression/decompression operations. In one exemplary implementation, the interface further comprise a mode state machine used to generate the mode control instructions and a test register state machine that generate test state control instructions, wherein the test mode control instructions and the test state control instructions direct operations of the centralized test controller.
    Type: Application
    Filed: October 27, 2016
    Publication date: April 27, 2017
    Inventors: Milind Sonawane, Amit Sanghani, Jonathon E. Colburn, Bala Tarun Nelapatla, Shantanu Sarangi, Rajendra Kumar reddy.S
  • Publication number: 20170115345
    Abstract: A method for testing. An external clock frequency is generated. Test data is supplied over a plurality of SSI connections clocked at the external clock frequency, wherein the test data is designed for testing a logic block. A DSTA module is configured for the logic block that is integrated within a chip to a bandwidth ratio, wherein the bandwidth ratio defines the plurality of SSI connections and a plurality of PSI connections of the chip. The external clock frequency is divided down using the bandwidth ratio to generate an internal clock frequency, wherein the bandwidth ratio defines the external clock frequency and the internal clock frequency. The test data is scanned over the plurality of PSI connections clocked at the internal clock frequency according to the bandwidth ratio, wherein the plurality of PSI connections is configured for inputting the test data to the plurality of scan chains.
    Type: Application
    Filed: October 27, 2016
    Publication date: April 27, 2017
    Inventors: Milind Sonawane, Amit Sanghani, Shantanu Sarangi, Jonathon E. Colburn, Bala Tarun Nelapatla, Sailendra Chadalavda, Rajendra Kumar reddy.S, Mahmut Yilmaz