Patents by Inventor Rajesh Kamana

Rajesh Kamana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230298951
    Abstract: Test structures for wafers are disclosed. A device may include a silicon wafer including a number of die and a scribe area between two die of the number of die. The scribe area may include one or more test structures. The test structures may include a p-doped region and an n-doped region adjacent to the p-doped region. The test structures may also include a first contact electrically coupled to the p-doped region and a second contact electrically coupled to the n-doped region. The second contact may be proximate to the first contact. Associated devices, systems, and methods are also disclosed.
    Type: Application
    Filed: March 16, 2022
    Publication date: September 21, 2023
    Inventors: Chase M. Hunter, Marlon W. Hug, Stephen W. Russell, Rajesh Kamana, Amitava Majumdar, Radhakrishna Kotti, Ahmed N. Noemaun, Tejaswi K. Indukuri
  • Patent number: 11636911
    Abstract: Methods, systems, and devices for leakage source detection are described. In some cases, a testing device may scan a first set of access lines of a memory die that have a first length and a second set of access lines of the memory die that have a second length different than the first length. The testing device may determine a first error rate associated with the first set of access lines and a second error rate associated with the second set of access lines. The testing device may categorize a performance of the memory die based on the first and second error rates. In some cases, the testing device may determine a third error rate associated with a type of error based on the first and second error rates and may categorize the performance of the memory die based on the third error rate.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: April 25, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Radhakrishna Kotti, Patrick Daniel White, Pavan Reddy K Aella, Rajesh Kamana
  • Publication number: 20220020446
    Abstract: Methods, systems, and devices for leakage source detection are described. In some cases, a testing device may scan a first set of access lines of a memory die that have a first length and a second set of access lines of the memory die that have a second length different than the first length. The testing device may determine a first error rate associated with the first set of access lines and a second error rate associated with the second set of access lines. The testing device may categorize a performance of the memory die based on the first and second error rates. In some cases, the testing device may determine a third error rate associated with a type of error based on the first and second error rates and may categorize the performance of the memory die based on the third error rate.
    Type: Application
    Filed: July 28, 2021
    Publication date: January 20, 2022
    Inventors: Amitava Majumdar, Radhakrishna Kotti, Patrick Daniel White, Pavan Reddy K. Aella, Rajesh Kamana
  • Patent number: 11081203
    Abstract: Methods, systems, and devices for leakage source detection are described. In some cases, a testing device may scan a first set of access lines of a memory die that have a first length and a second set of access lines of the memory die that have a second length different than the first length. The testing device may determine a first error rate associated with the first set of access lines and a second error rate associated with the second set of access lines. The testing device may categorize a performance of the memory die based on the first and second error rates. In some cases, the testing device may determine a third error rate associated with a type of error based on the first and second error rates and may categorize the performance of the memory die based on the third error rate.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: August 3, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Radhakrishna Kotti, Patrick Daniel White, Pavan Reddy K Aella, Rajesh Kamana
  • Publication number: 20210151119
    Abstract: Methods, systems, and devices for leakage source detection are described. In some cases, a testing device may scan a first set of access lines of a memory die that have a first length and a second set of access lines of the memory die that have a second length different than the first length. The testing device may determine a first error rate associated with the first set of access lines and a second error rate associated with the second set of access lines. The testing device may categorize a performance of the memory die based on the first and second error rates. In some cases, the testing device may determine a third error rate associated with a type of error based on the first and second error rates and may categorize the performance of the memory die based on the third error rate.
    Type: Application
    Filed: November 14, 2019
    Publication date: May 20, 2021
    Inventors: Amitava Majumdar, Radhakrishna Kotti, Patrick Daniel White, Pavan Reddy K. Aella, Rajesh Kamana
  • Patent number: 10672500
    Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: June 2, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Patent number: 10650891
    Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: May 12, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Publication number: 20190355418
    Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 21, 2019
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Publication number: 20190341122
    Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 7, 2019
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Patent number: 10403359
    Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: September 3, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Patent number: 10381101
    Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 13, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Publication number: 20190189209
    Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.
    Type: Application
    Filed: March 12, 2018
    Publication date: June 20, 2019
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Publication number: 20190189237
    Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 20, 2019
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Publication number: 20120007073
    Abstract: Some embodiments include methods for quality testing material removal procedures. A test structure is formed to contain a pair of electrically conductive segments. The segments are the same relative to a detectable property as long as they are electrically connected, but becoming different relative to such property if they are disconnected from one another. A material is formed over the test structure, and across a region of a semiconductor substrate proximate to the test structure. The material is subjected to a procedure which removes at least some of it, and which fabricates a structure of an integrated circuit construction in the region proximate to the test structure. After the procedure, it is determined if the segments are the same relative to the detectable property.
    Type: Application
    Filed: July 6, 2010
    Publication date: January 12, 2012
    Inventors: Anjum Mehta, Shawn Lyonsmith, Rajesh Kamana, Tyler Hansen, Amit Gupta, Suresh Ramakrishnan